Moisture Dependent Physical Properties of Gmelina Fruits and Nuts

Authors

  • Engr. Oghenerukevwe Prosper  Department of Mechanical Engineering, Delta state polytechnic, Ozoro, Nigeria
  • Hilary Uguru  Department of Agricultural and Bio-Environmental Engineering, Delta state polytechnic, Ozoro, Nigeria

Keywords:

Gmelina Fruit, Gmelina Nut, Physical Properties, Medicinal Plant, Moisture Content

Abstract

Physical properties of crops are important parameters to be considered during the design and development of harvesting, separation, cleaning and processing machines. Therefore, this study was conducted to investigate some moisture-dependent physical properties of gmelina seeds, namely; seed dimensions, surface area, projected area, sphericity, bulk density, true density, porosity, and static coefficient of friction against different materials. The analysis of variance shows that, moisture content significantly (P? 0.05) affects all the physical properties studied, apart from the efficient of static friction. From the results, increasing moisture content from 30 to 51 % (w.b), the length, width, thickness, the geometric mean diameter, sphericity, surface area and volume of the nut increased significantly (P<0.05) from 12.99 to 15.47mm, 6.31to 9.19 mm, 5.49 to 7.42 mm, 7.66 to 10.18 mm, 59.07 to 65.92 %, 185.12 to 326.81 mm2 and 238.09 to 558.49 mm3 respectively. In addition, increasing moisture content from 30 to 51 % (w.b), the corresponding values for nut and fruit bulk density were 387 to 701 kg/m3 and 327 to 615 kg/m3 respectively; while the true density had 790 to 1065 kg/m3 and 637 to 887 kg/m3 respectively; whereas, the porosity decreased from 51.01 to 34.18 % and 48.67 to 30.67 % respectively for the nut and fruit. kg/m3.. The static angle of friction was determined on four different contacting materials, plywood, robber, galvanized iron sheet, and formica surfaces. At all moisture contents, the maximum frictions are offered by plywood, followed by the rubber, galvanized iron and formica surfaces.

References

  1. Tewari, D.N. (1995). “A Monograph on Gamari [Gmelina arboreal Roxb]” International Book Distributors.
  2. Adeyeye, M A. (1971). Composition of seed oils of gmelina arboreal and teak tectora-grandis Pak. J. Sci. Ind. Res., 34 (9), p. 359
  3. Uzoh, F.C. and Onukwuli, D.O. (2016). Extraction, analysis and desaturation of gmelina seed oil using different soft computing approaches. South African Journal of Chemical Engineering Volume 22,6-16
  4. Adegbehin, J.O, Abayomi, J. O, Nwaigbo, L. B. (1988). Gmelina arborea in Nigeria. Commonwealth Forestry Review 67(2), 159-66
  5. Nayak, B.S, Jena, P.K, Dinda, S.C, Ellaiah, P. (2012). Phytochemical investigation and in vitro evaluation of anthelmintic activity of Gmelina arborea roxb. fruit extracts. Asian Journal of Chemistry 24(8), 3445-48.
  6. Malik, M. A., & Saini, C. S. (2016). Engineering properties of sunflower seed: Effect of dehulling and moisture content. Cogent Food & Agriculture, 2(1), 1145783. https://doi.org/10.1080/23311932.2016.1145783
  7. Mohsenin, N. N. (1986). Physical properties of plant and animal materials (3rd ed.). New York, NY: Gordon and Breach Science
  8. Esref, I., and Halil, U. (2007). Moisture-dependent physical properties of white speckled red kidney bean grains. Journal of Food Engineering, 82, 209–216
  9. Kheiralipour, K., Karimi, M., Tabatabaeefar, A., Naderi, M., Khoubakht, G., and Heidarbeigi, K. (2008). Moisture-depend physical properties of wheat (Triticum aestivum L.). Journal of Agricultural Technology. 53-65
  10. Stroshine, R., (1998). Physical Properties of Agricultural Material and Food Products. Dept of Agricultural Engineering Purdue University Press, West Lafayette, New York, USA, pp. 287
  11. Parde, S.R., Johal, A., Jayas, D.S. and White, N.D.G. (2003). Physical properties of buckwheat cultivars. Canadian Bio-systems. Engineering, Technical Note.
  12. Sacilik K., Ozturk R. and Keskin R. (2003). Some physical properties of hemp seed. Biosystems Engineering, 86(2), 191–198.
  13. Altuntas E., Yildiz M. (2007). Effect of moisture content on some physical and mechanical properties of faba bean (Vicia faba L.) grain. Journal of Food Engineering, 78, 174–183.
  14. Amin M.N., Hossain M.A. and Roy K.C. (2004). Effect of moisture content on some physical properties of lentil seeds. Journal of Food Engineering, 65, 83–87.
  15. Baümler E., Cuniberti A., Nolasco S.M. and Riccobene I.C., (2006). Moisture dependent physical and compression properties of safflower seed. Journal of Food Engineering, 79, 134–140.
  16. Selvi K.C., Pinar Y. and Yesiloglu E. (2006). Some physical properties of linseed. Biosystems Engineering, 95(4), 607–612
  17. Kashaninejad, M., Mortazavi, A., Safekordi, A., Tabil, L.G., 2006. Some physical properties of pistachio (Pistaciavera L.) nut and its kernel. Journal of Food Engineering. 72, 30–38.
  18. Eke, C.N.U., Asoegwu, S.N. and Nwandikom, G.I. (2007). Physical properties of jackbean (Canavalia ensiformis). Agricultural Engineering International 9: 1–11.
  19. AACC (2000) Approved methods, American Association of Cereal Chemists. 10th edn, Moisture determination, 44–15A, Minnasota, St Paul
  20. Razavi, S., Yeganehzad, B. and Sadeghi, B. (2009). Moisture dependent physical properties of canola seeds. Journal of Agriculture Science and Technology, Vol. 11, 309-322, 2009.
  21. Singh, K.K. and Goswami, T.K. (1996). Physical properties of cumin seed. Journal of Agricultural Engineering Research 64: 93–98.
  22. Sahay, K.M. and Singh, K.K. (1994). Unit Operations of Agricultural Processing. 1st ed. Vikas Publishing House Pvt. Ltd., New Delhi, India
  23. Santalla, E. M., & Mascheroni, R. H. (2003). Note: Physical properties of high oleic sunflower seeds. Food Science and Technology International, 9, 435–442. http://dx.doi.org/10.1177/1082013203040756
  24. Mirzabe, A. H., M. Taheri, A. Pouyesh, and N. B. Bavani. (2016). Moisture content on some engineering properties of celery (Apium Graveolens L) seeds. Agricultural Engineering International: CIGR Journal, 18 (2):243-259.
  25. Aydin, C., & Ozcan, M. (2002). Some physico-mechanic properties of terebinth (Pistacia terebinthus L.) fruits. Journal of Food Engineering, 53, 97–101.
  26. Gupta, R. K., and Das, S. K. (1997). Physical properties of sunflower seeds. Journal of Agricultural Engineering Research, 66(1), 1–8. http://dx.doi.org/10.1006/jaer.1996.0111
  27. Vilche, C., Gely, M., and Santalla, E. (2003). Physical properties of quinoa seeds. Biosystems Engineering, 86, 59–65.http://dx.doi.org/10.1016/S1537-5110(03)00114-4
  28. Kingsly, A.R.P., Singh, D.B., Manikantan, M.R. and Jain, R.K. (2006). Moisture dependent physical properties of dried pomegranate seeds (Anardana). Journal of Food Engineering 492–496
  29. Deshpande, S. D., Bal, S., & Ojha, T. P. (1993). Physical properties of soybean. Journal of Food Engineering, Research, 56, 89–98.
  30. Joshi, D. C., Das, S. K., & Mukherjee, R. K. (1993). Physical properties of pumpkin. Journal of Agricultural Engineering Research, 54, 219–229. http://dx.doi.org/10.1006/jaer.1993.1016
  31. Vishwakarma, R.K., Shivhare, U.S. and Nanda, S.K. (2012). Physical properties of guar seeds. Food and Bioprocess Technology 5: 1364–1371. [32] Çarman K. (1996). Some physical properties of lentil seeds. Journal of Agricultural Engineering Research, 63(2), 87–92.
  32. Suthar S.H., Das S.K. (1996). Some physical properties of karingda [Citrullus lanatus (thumb) mansf] seeds. Journal of Agricultural Engineering Research, 65(1), 15– 22.
  33. Nimkar P.M., Chattopadhyay P.K. (2001). Some physical properties of green gram. Journal of Agricultural Engineering Research, 80(2), 183–189.
  34. Karaj, S. and Müller, J. (2010). Determination of physical, mechanical and chemical properties of seeds and kernels of Jatropha curcua L. Industrial Crops and Products 32: 129–138.
  35. Zewdu A, and Solomon W. Moisture-dependent physical properties of tef seed. Biosystem Engineering 2007;96(1):57–63.
  36. Mehdizadeh SA, Minaei S, Hancock NH, Karimi MA. (2014). A intelligent system for egg quality classification based on visible-infrared transmittance spectroscopy. Inform Process Agriculture;1(2):105–14.
  37. Sa´nchez-Mendoza J, Domi´nguez-Lo´pez A, Navarro-Galindo S, Lo´pez-Sandoval JA. (2008). Some physical properties of Roselle (Hibiscus sabdariffa L.) seeds as a function of moisture content. Journal Food Engineering;87(3):391–7.
  38. Sharma V, Das L, Pradhan R, Naik S, Bhatnagar N, Kureel R. (2011). Physical properties of tung seed: an industrial oil yielding crop. Industrial Crops and Products;33(2):440–4.
  39. Balasubramanian, S., & Viswanathan, R. (2010). Influence of moisture content on physical properties of minor millets. Journal of Food Science and Technology, 47, 279–284.
  40. Visvanathan, R., Palanisamy, P. T., Gothandapani, L., & Sreenarayanan, V. V. (1996). Physical properties of neem nut. Journal of Agricultural Engineering Research, 63, 19–26.
  41. Bamgboye, I. and O.A. SadiIku. (2015). Moisture-dependent physical properties of locust bean (Parkia biglobosa) seeds, Future of Food: Journal on Food, Agriculture and Society, 3(2), 27-40.

Downloads

Published

2018-04-30

Issue

Section

Research Articles

How to Cite

[1]
Engr. Oghenerukevwe Prosper, Hilary Uguru, " Moisture Dependent Physical Properties of Gmelina Fruits and Nuts, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 4, pp.1347-1359, March-April-2018.