Orthogonal Series' of Absolute Banach Summability

Authors(4) :-Pawan Saxena, Madhukar Sharma, Dinesh Kumar Sharma, Gopal Pathak

In this paper we have proved a theorem on “Orthogonal Series’of Absolute Banach Summability” which generalizes known result. However our theorem is as follows.

Norlund Summability, Banach Summability, Summability

  1. Banach, S., Theoric dis operations Lineairs monograffe, Malematyezne, Warsaw (1932).
  2. Bosanquet, L.S. and Hyslop, J.M., On the absolute summability of the allied series of the Fourier series, Mathematics Zeitsehrift, 42(1937), 489-512.
  3. Hardy, G.H., Divergent Series, Oxford University Press, Oxford, (1949).
  4. Lal, S.N., On the Absolute Nörlund summability of Fourier Series, Indian Journal of Mathematics, 9(1967), 151-161.
  5. Leinder, L., Überstrukturbe dingungen für Fourierahen, Math, Zeitsner’s 88(1965), 418-431.
  6. Paikray,S.K., Misra,U.K. and Sahoo,N.C., Absolute banach summability of a factored Fourier series IJRRAS (2011),3-7.
  7. Okuyama, Y., On the Absolute Nörlund summability of orthogonal series, proc., Japan Academy, Vol. 54, Ser A. No. 5, (1978), 113-118.
  8. Ul’yanov, P.L., Solved and unsolved problem in the theory of trigonometric and orthogonal series, Uspehi, Math., nauk (1964), 3-69.
  9. Zygmund, A., Trigonometric series vol I and II (IInd), Cambridge University Press, Cambridge (1959).

Publication Details

Published in : Volume 2 | Issue 1 | January-February 2016
Date of Publication : 2016-02-25
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 229-232
Manuscript Number : IJSRSET162161
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Pawan Saxena, Madhukar Sharma, Dinesh Kumar Sharma, Gopal Pathak , " Orthogonal Series' of Absolute Banach Summability, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 2, Issue 1, pp.229-232, January-February.2016
URL : http://ijsrset.com/IJSRSET162161

Follow Us

Contact Us