SFCL with 5 – Level Inverter Using Four Types of HVDC Circuit Breakers

Authors(2) :-T. Harish, K. Jithendra Gowd

In this paper, an application of superconducting fault current limiter (SFCL) is proposed to limit the fault current that occurs in power system, SFCL is a device that uses superconductors to instantaneously limit or reduce unanticipated electrical surges that may occur on utility distribution and transmission networks. In this paper we are increasing the levels of inverter. If we increase the level then the efficiency will be improved and also accuracy will be improved. One good solution is, combining the fault current limiting technologies with DC breaking topologies. The application of resistive Superconducting Fault Current Limiter (SFCL) on various types of HVDCCB and can estimate the effects of combining fault current limiters on conventional DC breakers. the simulation work done for resistive SFCL and added to the DC breakers and verify its interruption characteristics and distributed energy across HVDC CB. The major advantage is that the output waveform is more close to sinusoidal and harmonics can be reduced if higher the number of the level, approximately sin wave. From the results of simulation work, maximum fault current, interruption time and dissipated energy stress on the HVDC CB could be decreased by applying SFCL. By using the simulation results we can analyze the proposed method.

Authors and Affiliations

T. Harish
P.G. Student, Department of Electrical Engineering, JNTU Engineering college, Anantapur, Andhrapradesh, India
K. Jithendra Gowd
Assistant professor, Department of Electrical Engineering, JNTU Engineering College, Anantapur, Andhrapradesh, India

DC Fault current Interruption, HVDC Fault, HVDC Circuit Breaker, 5-level inverter, MTDC, Resistive Superconducting Fault Current Limiter.

  1. J. Yang, J. Fletcher, and J. O’Reilly, "Multi-terminal DC wind farm collection grid internal fault analysis and protection design," IEEE Trans. Power Del., vol. 25, no. 4, pp. 2308-2318, Oct. 2010.
  2. L. Tang, et al., "Protection of VSC multi-terminal HVDC against DC faults," in Proc. 33rd Annual IEEE Power Electronics Specialist Conference, vol.2, pp.719-724, Jun. 2002.
  3. J. Rafferty, L. Xu and D. J. Morrow, "DC fault analysis of VSC based multi-terminal HVDC systems," in Proc. AC and DC Power Transmission( ACDC 2012), 10th IET International Conference on, pp.1-6, Dec. 2012
  4. C. M. Franck, "HVDC circuit breakers: a review identifying future research needs," IEEE Trans. Power Del., vol. 26, no. 2, pp. 998-1007, Apr. 2011
  5. K. Tahata, et al., "HVDC circuit breakers for HVDC grid applications", in Proc. CIGRE AORC Tech. Meeting, Tokyo, Japan, May 2014.
  6. R. Zeng, et al., "Precharging and DC fault ride-through of hybrid MMCbased HVDC system," IEEE Trans. Power Del., vol. 30, no. 4, pp. 1298- 1306, Jun. 2014.
  7. Steven M. Blair et al., "Analysis of energy dissipation in resistive superconducting fault current limiters for optimal power system performance," IEEE Trans. Appl. Supercond., vol. 21, no 4, pp. 3452- 3457, Aug. 2011.
  8. Kim et al., "Development and grid operation of superconducting fault current limiters in KEPCO," IEEE Trans. Appl. Supercond., vol. 24, no. 5, Oct. 2014, Art. ID. 5602504.
  9. CIGRE  Working  Group  B4.52  "HVDC  grid easibility study: appendix H",  International   Council  for Large  Electric    Systems    (CIGRE),  Technical  Brochure 533, Apr. 2013.
  10. O.   Mayr,    "Beiträge    zur    theorie    des    statischen unddes dynamischen lichtbogens," Arch. Elektrotech., vol. 37, no. 12, pp. 588–608, Dec. 1943.
  11. Pieter  H.  Schavemaker,  Lou  van  der  Sluis,  "An mproved  Mayr-type  arc  model  based  on    current-zero measurements",  IEEE Trans. Power Del., Vol.  15,  no.  2, pp. 580-584, Apr. 2000.
  12. M. Bucher, C. M.   Frank, "Fault current   interruption n   multiterminal HVDC   networks,"    IEEE Trans. Power Del., vol.  31, no.  1, pp. 87-95, Feb. 2015.
  13. M.    M.    Walter,    "Switching    arcs    in    passive esonance  HVDC    circuit  breakers,"    Ph.D.  dissertation, ETH,    Zurich,    2013.  Online .  Available:  DOI: 10.3929/ethz-a-010112102.
  14. H.  J. Lee  et  al.,  "Effect  of  a SFCL on  commutation failure    in  a  HVDC  system,"  IEEE  Trans.  Appl. Supercond., vol. 23, no 3, Jun. 2013, Art. ID. 5600104.
  15. M.  Noe  and  M.Steurer,  "High-temperature superconductor  fault  current  limiters:  Concepts, applications,  and   development    status,"   Supercond. Sci. Technol., vol. 20, no. 3, pp. R15-R29, Jan. 2007.
  16. Y.Shirai    et    al.,    "Simulation    study    on    operating characteristics of superconducting  fault current  limiter  in one-machine    infinite  bus  power  system,"    IEEE  Trans. Appl.  Supercond.,  vol.  13,  no.  2,  pp.  1822–1827,  Jun.2003.
  17. Umer  Amir  Khan   et  al.,  "Feasibility  analysis   of the application and positioning of DC HTS FCL    in a DC microgrid    through  modeling  and  simulation  using Simulink and Simpowersystem," Phys. C, Supercond.

Publication Details

Published in : Volume 3 | Issue 6 | September-October 2017
Date of Publication : 2017-10-31
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 796-804
Manuscript Number : IJSRSET173698
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

T. Harish, K. Jithendra Gowd, " SFCL with 5 – Level Inverter Using Four Types of HVDC Circuit Breakers, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 6, pp.796-804, September-October-2017.
Journal URL : http://ijsrset.com/IJSRSET173698

Article Preview

Follow Us

Contact Us