Electrochemical Corrosion Behavior, Microstructure, Mechanical and Thermal Performance of Tin-Aluminum Based Bearing Alloys

Authors

  • Abu Bakr El-Bediwi  Metal Physics Lab., Physics Department, Faculty of Science, Mansoura University, Egypt
  • N. A. El-Shishtawi  Metal Physics Lab., Physics Department, Faculty of Science, Mansoura University, Egypt
  • Manal Mawloud Abdullah  Faculty of Education Aboaesa, University of Alzawya, Libya

Keywords:

Corrosion Parameters, Microstructure, Elastic Modulus, Internal Friction, Vickers Hardness, Thermal Behavior

Abstract

Electrochemical corrosion behavior, elastic modului, internal friction, Vickers hardness, thermal performance and microstructure of Sn80Al20, Sn70Al20Bi5Zn3Cu2, Sn65Al20Sb5Pb5Cd5, Sn70Al20Sb5Ag3Zn2 and Sn63Al20Sb10Pb5Zn2 alloys have been investigated.  Internal friction of Sn80Al20 alloy decreased after adding Bi- Zn- Cu or Sb- Pb- Cd or Sb- Ag- Zn or Sb- Pb- Zn elements.  Elastic modulus and lattice microstrain of Sn80Al20 alloy decreased after adding Bi- Zn- Cu or Sb- Pb- Cd or Sb- Ag- Zn but it’s increased after adding 10%Sb- 5%Pb- 2%Zn.  Vickers hardness of Sn80Al20 alloy varied after adding Bi- Zn- Cu or Sb- Pb- Cd or Sb- Ag- Zn or Sb- Pb- Zn elements.  The corrosion rate of Sn80Al20 alloy in 0.5 M HCl increased after adding Bi- Zn-Cu or Sb- Ag- Zn or Sb- Pb- Zn elements but it’s decreased after Sb-Pb-Cd elements.  The corrosion current density (icorr) of Sn80Al20 alloy in 0.5 M HCl increased after adding Bi- Zn-Cu or Sb- Pb- Cd or Sb- Pb- Zn elements but it’s decreased after Sb-Ag-Zn elements.  The Sn70Al20Sb5Ag3Zn2 alloy has the beast properties for bearing applications.

References

  1. A. Zeren, E. Feyzullahoglu, M. Zeren, Materials and Design 28 (2007) 318
  2. P G Forrester, Met. Rev. 5 (1960) 507
  3. G C Pratt G C, Int. Met. Rev. 18 (1973) 62
  4. W I M Tegart, Elements of mechanical metallurgy. New York: The MacMillan Co. 1966: 91
  5. P G Forrester, Curr. Engg. Pract. 3 (1961) 4
  6. T. Desaki, Y. Goto, S. Kamiya, JSAE Rev. 21 (2000) 321
  7. K. Lepper, M. James, J. Chashechkina, D.A. Rigney, Wear 203–204 (1997) 46
  8. J P Pathak and S Mohan, Bull. Mater. Sci. 26: 3 (2003) 315
  9. A. A. El-Daly, Y. Swilem, A.E. Hammad, J. Alloy. Comp. 471 (2009) 98
  10. M.J. Esfandyarpour, R. Mahmudi, Mater. Sci. Eng. A 530 (2011) 402–410
  11. A. El-Bediwi, A.R. Lashin, M. Mossa, M. Kamal, Mater. Sci. Eng. A 528 (2011) 3568
  12. A. B. El-Bediwi, Radia. Eff. Def. Solid. 159 (2004) 125
  13. A. B. El-Bediwi, Radia. Eff. Def. Solid. 159 (2004) 539
  14. M.J. Esfandyarpour, R. Mahmudi, Mater. Sci. Eng. A 530 (2011) 402
  15. M. Kamal, A. El-Bediwi and M. R. El-Shobaki, Radia. Eff. Def. Sol. 161 (2006) 549 
  16. B. D Cullity, "Element of x-ray diffraction" Ch.10 (1959) 297
  17. S. Sppinert and W. E. Teffit, ASTM, Proc. 61  (1961) 1221
  18. E. Schreiber, O. L. Anderson and N. Soga, Elastic Constants and their Measurement, McGraw-Hill  Book Company, Ch. 4 (1973)
  19. S. Timoshenko and J. N. Goddier, "Theory of  elasticity, 2nd Ed", McGraw-Hill, New York, (1951) 277

Downloads

Published

2017-12-31

Issue

Section

Research Articles

How to Cite

[1]
Abu Bakr El-Bediwi, N. A. El-Shishtawi, Manal Mawloud Abdullah, " Electrochemical Corrosion Behavior, Microstructure, Mechanical and Thermal Performance of Tin-Aluminum Based Bearing Alloys, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 2, Issue 2, pp.833-842, March-April-2016.