A Classical Approach for the Melting of a Bare and Encapsulated Nanorod

Authors

  • Himanshu Kumar Pandey  Principal, Gyanodaya Gurukul, Patna, India
  • Nishit Kumar Pandey  PGT, Anchi Devi Sarraf Girls Plus Two School, Madhupur, Jharkhand, India

Keywords:

Abstract

Melting point depression and enhancement of nanomaterials have been found to depend on size, dimension and surface properties of the nanomaterials. Ours is a phenomenological model based on classical considerations regarding melting of nanomaterials. The model extensively discusses a nanorod, a bare nanorod and an encapsulated nanorod separately. We have considered a nanorod and using a simple minded approach of cohesive binding energy observed that the melting point of the nanorod gets depressed as the size goes down. Further, to illustrate the phenomena, we have adopted a classical thermodynamic approach which is mainly based on Gibbs energy of a bare and encapsulated (containing matrix) nanorod. We have minimized the Gibbs energy for the two nanosystems separately in different phases and calculated and analyzed the results for the melting point of the nanorod. The results of our models are consistent with both of experimental results and other thermodynamic models. Keywords : Nanomaterials, Encapsulated Nanorod, Thermodynamic

References

  1. K. Semenchenko, Surface Phenomna in Metals and Allys (Pergamon, Oxford, United Kingdom, 1961)p,281.
  2. R. Sambles, Proc. R. Soc. A 324, 339 (1971).
  3. Buffat and J.P. Borel, Phys. Rev. A 13, 2287 (1976).
  4. R. Couchman and W.A. Jesser, Nature 269, 481 (1977).
  5. L. Allen, W.W. Gile, and W.A. Jesser, Acta, Metall. 28, 1695 (1980).
  6. P. Skripov, V.P. Koverda, and V.N. Skokov, Phys. Status Solidi A 66, 109 (1981).
  7. Castro, R. Reifenberger, E.Choi, and R.P. Andres, Phys. Rev. B 42, 8548 (1990).
  8. N. Goldstein, C.M. Echer, and A.P. Alivistos, Science 256, 1425 (1992).
  9. Eckert, J.C. Holzer, C.C. Ahn, Z,. Fu, and W.L. Johnson, Nanostruct. Mater, 2, 407 (1993).
  10. G. Shi, J. Mater, Rees. 9, 1307 (1994).
  11. Ben David, Y. Lereah, G. Deutscher, R. Kofmans, and P. Cheyssac, Philos, Mag. A 71, 1135 (1995)
  12. L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, and L.H. Allen, Phys, Rev. Lett 77, 99 (1996).
  13. P. Johari, Philos, Mag. A 71, 1135 (1995).
  14. F. Peters, J.B. Cohen, and Y-W. Chung, Phys. Rev. B 57, 13430 (1998).
  15. Morishige and K. Kawano, J. Phys. Chem. B 103, 7906 (1999).
  16. Jiang, H.X. Shi, and M. Zhao, J. Chem. Phys. 33, 2653 (2000).
  17. Zhang, J.C. Li, and Q. Jiang, HJ. Phys. D: Appl. Phys. 33, 2653 (2000).
  18. Wen, M. Zhao, and Q. Jiang, J. Phys. Condens. Mater. 12, 8819 (2000).
  19. Zhang, . Zhao, and Q. Jiang, Semicond. Sci. Technol. 16, L33 (2001)
  20. Pawlow, Z. Phys. Chem. 65, 545 (1909).
  21. J. Hanszen, Z. Phys. 157, 523 (1960).
  22. R.H., Jones. J.Mater. Sci. 9, 1 (1974).
  23. Saka, Y. Nishikawa, and T. Imura, Phil. Mag. A 57, 895 (1988).
  24. Graback and J. Bohr, Phys. Rev. Lett. 64, 934 (1990).
  25. L. Zhang and B. Cantor, Acta Metall. Mater. 39, 1595 (1991).
  26. R Goswami and K. Chattopadhyay, Philos. Mag. Lett. 68, 215 (1993)/
  27. W. Sheng. G. Ren. L.M. Peng. Z.Q. Hu, and K.Lu, Philos. Mag. Lett. 73, 179 (1996).
  28. Lu, H.W. Sheng, and Z.H. Jin, Chinese J. Mater, Res. 11, 658 (1997, in Chiense)
  29. W. Sheng, G. Ren, L.M. Peng, Z.Q. Hu, and K. Lu, J. Mater. Res. 12, 119 (1997).
  30. Chatoopadhyay and R. Goswami, Prog. Mater. Sci. 42, 287 (1997).
  31. Zhang, Z.H. Jin,L.H. Zhang, M.L. Sui, and K. Lu, Phys. Rev. Lett. 85, 1484 (2000).
  32. Jiang, Z,. Zhang, and J.C. Li, Chem. Phys. Lett 322, 549 (2000).
  33. Jinag, Z. Zhang, and J.C. Li, Acta Mater, 48, 4791 (2000).
  34. Jiang, L.H. Liang, and J.C. Li, J. Phys. Condens Mater 13, 565 (2001).
  35. Reiss and L.B. Wilson, J. Colloid Scin, 3, 551, (1948).
  36. Jiang, H.x. Shi and M. Zhao, acta Meter, 47, 2109 (1999).
  37. A. Lindemann, Z. Phys.11, 609 (1910).
  38. F. Mott, Proc. R. Soc. A 146, 465 (1934).
  39. R. Regel and V.M. Glazov, Semiconductors 29, 405 (1995).
  40. K. King. In Physical Metallurgy, edited by R.W. Cahn (North Holland, Amsterdam, The Netherland 1970), pp 59-63.
  41. Table of Periodic Properties of the Elements (Sargent Welch Scientific, Skokie, IL 1980), p. 1.
  42. R. Ubbelohde, Melting and Crystal Structure (Clarendon Press, Oxford, United Kingdom, 1965), p.171.
  43. W.M. Frenken and J.F. van der Veen, Phys. Rev. Lett. 54, 134 (1985).
  44. T. Chen, R.N. Barenett, and U. Landman, Phys. Rev. B 41, 439 (1990).
  45. Antonelli, S.N. Khanna, and P. Jena, Phys. Rev. B 48, 8263 (1993).
  46. H.Gleiter,Acta Mater.2000,48,1.
  47. Takagi, J Phys. Soc. Jpn. 1954, 9, 359
  48. Gulseren, F. Ercolessi, E. Tossati, Phys Rev. 1995, B51, 7377.

 

Downloads

Published

2017-12-30

Issue

Section

Research Articles

How to Cite

[1]
Himanshu Kumar Pandey, Nishit Kumar Pandey, " A Classical Approach for the Melting of a Bare and Encapsulated Nanorod, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 8, pp.1328-1341, November-December-2017.