Existence of Mild solutions of Fractional order Hybrid Deferential Equations with Impulses

Authors

  • Prakashkumar H. Patel  Department of Mathematics, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, India

DOI:

https://doi.org/10.32628/IJSRSET218375

Keywords:

Deferential Equations, Hybrid Dynamical System, Integro-Differential Equation

Abstract

This article derive sufficient conditions for existence of mild solution for the hybrid fractional order differential equation with impulses of the form eq1 on a Banach space X over interval [0,T]. The results are obtained using the concept of hybrid fixed point theorem. Finally an illustration is added to show validation of the derived results.

References

  1. Samko S. G. Kilbas A. A, Marichev O. I, Fractional Integrals and Derivatives; Theory and Applications, Gorden and Breach, (1993).
  2. Kilbas A. A., Srivastava H. M., Trujillo J. J, Theory and Applications of Fractional Differential Equations, Elsevier Science, (2006).
  3. M. Renardy, W. J. Hrusa, J. A. Nohel, Mathematical problems in viscoelasticity, Longman Scientific and technical, Newyork, (1987).
  4. J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering, 167(1998), 57-68.
  5. A. M. A. El-Sayed, Fractional order wave equation, International Journal of Theoretical Physics, 35(1996),311-322.
  6. V. Gafiychuk, B. Datsan, V. Meleshko, Mathematical modeling of time fractional reaction-diffusion system, Journal of Computational and Applied Mathematics, 220(2008), 215-225.
  7. R. Metzler, J. Klafter, The restaurant at the end of random walk, the recent developments in description of anomalous transport by fractional dynamics, Journal of Physics A: A Mathematical and General, 37(2004), 161-208
  8. ] J. H. He,Some applications of nonlinear fractional differential equations and their approximations, Bulletin of Science and Technology, 15(1999), 86–90.
  9. K. Sayevand, M. Fardi, E. Moradi, F. Hemati Boroujeni, Convergence analysis of homotopy perturbation method for Volterra integro-differential equations of fractional order, Alexandria Engineering Journal (2013) 52, 807-812.
  10. J. Prakash, M. Kothandapani, V. Bharathi, Numerical approximations of nonlinear fractional differential difference equations by using modified He-Laplace method, Alexandria Engineering Journal (2016) 55, 645-651.
  11. Mohammad Tamsir, Vineet K. Srivastava, Revisiting the approximate analytical solution of fractional order gas dynamics equation, Alexandria Engineering Journal (2016) 55, 867-874.
  12. Olaniyi Samuel Iyiola, Gbenga Olay, The fractional Rosenau-Hyman model and its approximate solutioninka Ojo, Okpala Mmaduabuchi, Alexandria Engineering Journal (2016) 55, 1655-1659.
  13. Jyotindra C. Prajapati, Krunal B. Kachhia, Shiv Prasad Kosta, Fractional calculus approach to study temperature distribution within a spinning satellite, Alexandria Engineering Journal (2016) 55, 2345-2350.
  14. Harendra Singh, A new numerical algorithm for fractional model of Bloch equation in nuclear magnetic resonance, Alexandria Engineering Journal (2016) 55, 2863-2869.
  15. Muhammad Saqib, Farhad Ali, Ilyas Khan, Nadeem Ahmad Sheikh, Syed Aftab Alam Jan, Samiulhaq, Exact solutions for free convection flow of generalized Jeffrey fluid: A Caputo-Fabrizio fractional model, Alexandria Engineering Journal (2017) (in press).
  16. Nauman Raza, M. Abdullah, Asma Rashid Butt, Aziz Ullah Awan, Ehsan Ul Haque, Flow of a second grade fluid with fractional derivatives due to a quadratic time dependent shear stress, Alexandria Engineering Journal (2017) (in press).
  17. Y. Cheng, G. Guozhu, On the solution of nonlinear fractional order differential equations, Nonlinear Analysis: Theory, Methods and Applications, 310(2005), 26-29.
  18. B. Bonilla, M. Rivero, L. Rodriguez-Germa, J. J. Trujillo, Fractional differential equations as alternative models to nonlinear differential equations, Applied Mathematics and Computation 187 (2007) 79–88.
  19. D. Delbosco, L. Rodino, Existence and uniqueness for nonlinear fractional differential equations, Journal of Mathematical Analysis and Applications, 204(1996), 609-625. ry, Methods and Applications, 310(2005), 26-29.
  20. M. M. El-Borai, Semigroups and some nonlinear fractional differential equations, Applied Mathematics and Computations, 149(2004), 823-831.
  21. L. Byszewski, Theorems about the existence and uniqueness of solutions of semi linear evolution non-local Cauchy problem, Journal of Mathematical Analysis and Applications, 162(1991), 494-505.
  22. K. Balachandran, J. J. Trujillo, The non-local Cauchy problem for nonlinear fractional integro-differential equations in Banach spaces, Nonlinear Analysis, 72(2010), 4587-4593.
  23. M. Benshohra, J. Henderson, S. K. Ntouyas, A. Quahab, Existence results for fractional order functional differential equations with infinite delay, Journal of Mathematical Analysis and Applications,338(2008),1340-1350.
  24. L. Mahto, S. Abbas, Existence and uniqueness of Caputo fractional differential equations, AIP Conf. Proc., 1479(2012), 896-899.
  25. A. Neamaty, M. Yadollahzadeh, R. Darzi, On fractional differential equation with complex order, Prog. Frac. Differ. Appl. 1(2015),223-227.
  26. R. Ibrahim, A. Kilicman, F. Damag, Existence and uniqueness for a class of iterative fractional differential equations, 78(2015), 1-13.
  27. M. Matar, J. Trujillo, Existence of local solutions for differential equations with arbitary fractional order, Arab. J. Math. 5(2016), 215-224.
  28. K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence results for fractional impulsive integro-differential equations in Banach spaces, Commun Nonlinear Sci Numer Simulat, 16(2011), 1970-1977.
  29. K. Balachandran, S. Kiruthika, J. J. Trujillo, On fractional impulsive equations of sobolev type with nonlocal condition in Banach spaces, Computer and Mathematics with Applications, 62(2011),1157-1165.
  30. D. Somjaiwang and P. S. Ngiamsunthorn, Existence and approximations of solutions to fractional order hybrid differential equations, Advances in Differential equations, 2016(2016) 1-13.
  31. M. Herzallah and D. Baleanu, On fractional order hybrid differential equations, Abstr. Appl. Anal., 2014(2014), Aricle ID-389386.
  32. H. R. Kataria and P. H. Patel, Existence and uniqueness of solutions of fractional order hybrid differential equations with nonlocal Conditions, international journal of scientific research in science, engineering and technology,4 (2018), 1-6.
  33. B. Dhage, S. Dhage, Hybrid fixed point theory ordered normed linear spaces and applications to fractional integral equations, Differ. Equ. Appl., 5(2013), 155-184.
  34. B. Dhage, Partially condensing mappings in partially order normed linear spaces and applications to functional integral equation, Tamkang J. Math., 45(2014), 397-426.

Downloads

Published

2019-04-30

Issue

Section

Research Articles

How to Cite

[1]
Prakashkumar H. Patel "Existence of Mild solutions of Fractional order Hybrid Deferential Equations with Impulses" International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 2, pp.718-725, March-April-2019. Available at doi : https://doi.org/10.32628/IJSRSET218375