Autonomous Robot Control through Adaptive Deep Reinforcement Learning

Authors

  • Sandeep Kumar Dasa  Independent Researcher, USA

Keywords:

Adaptive Deep Reinforcement Learning, Autonomous Robot Control, Real-Time Deep Learning Algorithms, Navigation and Manipulation, Dynamic Environment Interaction

Abstract

The combination of adaptive deep reinforcement learning with autonomous robot control is considered in this work to be a significant contribution to robotics. This paper aims to discuss how these DRL techniques can help robots make autonomous decisions based on the output of the environment feedback to accomplish tasks such as navigation, manipulation, and interactions with dynamic environments. Real-time change and challenges are catered for effectively using real-time deep learning algorithms qualified by reinforcement learning paradigms. By experience, the robot achieves the best control policies, and the system remains flexible, robust, and efficient. Real-life examples and simulation scenarios are described in this paper to illustrate the prospects and difficulties of this area.

References

  1. Carlucho, I., De Paula, M., Wang, S., Petillot, Y., & Acosta, G. G. (2018). Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning. Robotics and Autonomous Systems, 107, 71-86. https://notablesdelaciencia.conicet.gov.ar/bitstream/handle/11336/88075/CONICET_Digital_Nro.8f750f87-afdd-4cfb-89de-72457a9eec17_A.pdf?sequence=2&isAllowed=y
  2. Gunnam, V. G., Kilaru, N. B., & Cheemakurthi, S. K. M. . (2022). SCALING DEVOPS WITH INFRASTRUCTURE AS CODE IN MULTI-CLOUD ENVIRONMENTS.Turkish Journal of Computer and Mathematics Education (TURCOMAT),13(2), 1189–1200. https://doi.org/10.61841/turcomat.v13i2.14764
  3. Vasa, Y., & Mallreddy, S. R. (2022). Biotechnological Approaches To Software Health: Applying Bioinformatics And Machine Learning To Predict And Mitigate System Failures. Natural Volatiles & Essential Oils, 9(1), 13645–13652. https://doi.org/https://doi.org/10.53555/nveo.v9i2.5764
  4. Katikireddi, P. M., & Jaini, S. (2022). IN GENERATIVE AI: ZERO-SHOT AND FEW-SHOT. International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT) , 8(1), 391–397. https://doi.org/https://doi.org/10.32628/CSEIT2390668
  5. Nunnagupala, L. S. C. ., Mallreddy, S. R., & Padamati, J. R. . (2022). Achieving PCI Compliance with CRM Systems. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 13(1), 529–535.
  6. Naresh Babu Kilaru, Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam, 2021. "SOAR Solutions in PCI Compliance: Orchestrating Incident Response for Regulatory Security"ESP Journal of Engineering & Technology Advancements 1(2): 78-84.
  7. Jangampeta, S., Mallreddy, S.R., & Padamati, J.R. (2021). Anomaly Detection for Data Security in SIEM: Identifying Malicious Activity in Security Logs and User Sessions. 10(12), 295-298
  8. Vasa, Y. (2021). Robustness and adversarial attacks on generative models. International Journal for Research Publication and Seminar, 12(3), 462–471. https://doi.org/10.36676/jrps.v12.i3.1537
  9. Kilaru, N. B., Cheemakurthi, S. K. M., & Gunnam, V. (n.d.). Advanced Anomaly Detection In Banking: Detecting Emerging Threats Using Siem. International Journal of Computer Science and Mechatronics, 7(4), 28–33.
  10. Naresh Babu Kilaru. (2021). AUTOMATE DATA SCIENCE WORKFLOWS USING DATA ENGINEERING TECHNIQUES. International Journal for Research Publication and Seminar, 12(3), 521–530. https://doi.org/10.36676/jrps.v12.i3.1543
  11. Gunnam, V., & Kilaru, N. B. (2021). Securing Pci Data: Cloud Security Best Practices And Innovations. Nveo, 8(3), 418–424. https://doi.org/https://doi.org/10.53555/nveo.v8i3.5760
  12. Katikireddi, P. M., Singirikonda, P., & Vasa, Y. (2021). Revolutionizing DEVOPS with Quantum Computing: Accelerating CI/CD pipelines through Advanced Computational Techniques. Innovative Research Thoughts, 7(2), 97–103. https://doi.org/10.36676/irt.v7.i2.1482
  13. Vasa, Y. (2021). Quantum Information Technologies in cybersecurity: Developing unbreakable encryption for continuous integration environments. International Journal for Research Publication and Seminar, 12(2), 482–490. https://doi.org/10.36676/jrps.v12.i2.1539
  14. Jangampeta, S., Mallreddy, S. R., & Padamati, J. R. (2021). Data Security: Safeguarding the Digital Lifeline in an Era of Growing Threats. International Journal for Innovative Engineering and Management Research, 10(4), 630-632.
  15. Singirikonda, P., Jaini, S., & Vasa, Y. (2021). Develop Solutions To Detect And Mitigate Data Quality Issues In ML Models. NVEO - Natural Volatiles & Essential Oils, 8(4), 16968–16973. https://doi.org/https://doi.org/10.53555/nveo.v8i4.5771
  16. Vasa, Y. (2021). Develop Explainable AI (XAI) Solutions For Data Engineers. NVEO - Natural Volatiles & Essential Oils, 8(3), 425–432. https://doi.org/https://doi.org/10.53555/nveo.v8i3.5769
  17. Vasa, Y. (2021). Develop Explainable AI (XAI) Solutions For Data Engineers. NVEO - Natural Volatiles & Essential Oils, 8(3), 425–432. https://doi.org/https://doi.org/10.53555/nveo.v8i3.5769
  18. Kilaru, N. B., & Cheemakurthi, S. K. M. (2021). Techniques For Feature Engineering To Improve Ml Model Accuracy. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 194-200.
  19. Vasa, Y., Jaini, S., & Singirikonda, P. (2021). Design Scalable Data Pipelines For Ai Applications. NVEO - Natural Volatiles & Essential Oils, 8(1), 215–221. https://doi.org/https://doi.org/10.53555/nveo.v8i1.5772
  20. Sukender Reddy Mallreddy(2020).Cloud Data Security: Identifying Challenges and Implementing Solutions.JournalforEducators,TeachersandTrainers,Vol.11(1).96 -102.

Downloads

Published

2022-03-17

Issue

Section

Research Articles

How to Cite

[1]
Sandeep Kumar Dasa "Autonomous Robot Control through Adaptive Deep Reinforcement Learning" International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 9, Issue 2, pp.503-509, March-April-2022.