R - Projective Motion in a Finsler Space Fn* with a Non-symmetric Connection
DOI:
https://doi.org/10.32628/IJSRSET22918Keywords:
R-Projective Motion, R-Curvature Collineation, Ricci- Collineation, Non-Symmetric Connection.Abstract
We have studied the R ?-Projective motion in a Finsler space Fn* equipped with a non-symmetric connection. R ? - Curvature collineation and Ricci- Collineation have also been studied in the above context and new results have been obtained.
References
- Davies, E.T . Lie-derivation in generalized metric spaces, Ann. Mat. Pura. Appl. 18, 261-274(1939)
- Rund, H. The differential geometry of Finsler spaces, Springer-Verlag., Berlin (1959).
- Yano, k . The theory of Lie-derivatives and its applications, North Holland Publ. Co., Amsterdam (1957).
- Katzin, G.H. Levine, J. and Davies, W.R . Curvature collineations of Finsler spaces, Tensor (NS) 3, 33-41 (1977).
- Pande, H.D. and Kumar, A. Special curvature collineation and projective symmetry in a Finsler space, Acad. Naz. dei Lincei Rend. Ser. XI, 52(1), 37-45, (1973).
- Singh, U.P. and Prasad B.N. Special curvature collineation in a Finsler space, Acad. Naz. dei Lincei Rend. Ser. VIII, 50(2), 82-87, (1971).
- Vranceanu, G.H. Lectii de geometrie differentiala, Vol I, EDP, BUC, (1962).
- Cartan, E Les espace de Finsler, Actualities, 79, Paris (1934).
Downloads
Published
2020-06-30
Issue
Section
Research Articles
License
Copyright (c) IJSRSET

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
[1]
Sanjay K. Pandey "R - Projective Motion in a Finsler Space Fn* with a Non-symmetric Connection" International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099,
Volume 7, Issue 3, pp.511-517, May-June-2020. Available at doi : https://doi.org/10.32628/IJSRSET22918