Electrospun Membrane with Ultrafine Fibers for Oil/Water Separation Application

Authors

  • Mohammad Fahim Uddin  College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, No. 928, 2ndStreet, Xiasha Higher Education Zone, Hangzhou, China
  • Jianyong Feng  

DOI:

https://doi.org//10.32628/IJSRSET2293117

Keywords:

Modification, Nanoparticles, Diameter, Electrospinning, Membrane, Oil/Water Filtration

Abstract

Environmental pollution has become an urgent concern for both nature and human beings because of oily wastewater spills from industries and household appliances. Therefore, the filtration of industrial oily wastewater is now a major problem in the present world. Many types of experiments are being conducted to find a solution for this issue, and researchers are still looking for a cheaper and better solution. A promising response to this issue can be membrane-interfaced oil-water filtration. And the application of Electrospun membranes can successfully solve this matter. It is found that Polyvinylidene Fluoride-based membranes are being used for this process because of their resistance to chemicals and good mechanical strength. Also, Titanium Dioxide particles are a suitable choice because of their non-hazardous properties and solubility with polymer solutions. In this study, Titanium Dioxide nanoparticles were first synthesized by modifying their pH, and then Electrospun Nanofibrous membranes were produced by adding those modified particles with Polyvinylidene Fluoride. A unique preparation method was used to decrease the particle diameter with alkaline agents, which also results in decreased fiber diameter of membranes. The produced membranes showed improved oleophilic properties and hydrophobicity. Finally, membranes were applied and can be associated with the progress of Oil/Water separation purposes, which also can sustain the recycling process of hazardous chemicals and ensure the contribution to a safe environment.

References

  1. Short JW, Rice SD, Heintz RA, Carls MG, Moles A. Long-term effects of crude oil on developing fish: Lessons from the Exxon Valdez oil spill. Energy Sources. 2003;25(6):509-517. doi:10.1080/00908310390195589
  2. Dubansky B, Whitehead A, Miller JT, Rice CD, Galvez F. Multitissue molecular, genomic, and developmental effects of the deepwater horizon oil spill on resident Gulf killifish (Fundulus grandis). Environ Sci Technol. 2013;47(10):5074-5082. doi:10.1021/es400458p
  3. Bae J, kim H, Kim KS, Choi H. Effect of asymmetric wettability in nanofiber membrane by electrospinning technique on separation of oil/water emulsion. Chemosphere. 2018;204:235-242. doi:10.1016/j.chemosphere.2018.04.003
  4. Meng X, Wang M, Heng L, Jiang L. Underwater Mechanically Robust Oil-Repellent Materials: Combining Conflicting Properties Using a Heterostructure. Adv Mater. 2018;30(11):1-8. doi:10.1002/adma.201706634
  5. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marĩas BJ, Mayes AM. Science and technology for water purification in the coming decades. Nature. 2008;452(7185):301-310. doi:10.1038/nature06599
  6. Xue Z, Cao Y, Liu N, Feng L, Jiang L. Special wettable materials for oil/water separation. J Mater Chem A. 2014;2(8):2445-2460. doi:10.1039/c3ta13397d
  7. Wang B, Liang W, Guo Z, Liu W. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chem Soc Rev. 2015;44(1):336-361. doi:10.1039/c4cs00220b
  8. Li L, Liu Z, Zhang Q, Meng C, Zhang T, Zhai J. Underwater superoleophobic porous membrane based on hierarchical TiO2 nanotubes: Multifunctional integration of oil-water separation, flow-through photocatalysis and self-cleaning. J Mater Chem A. 2015;3(3):1279-1286. doi:10.1039/c4ta04699d
  9. Ba H, Liu Y, Wang W, et al. Carbon Felt Monoliths Coated with a Highly Hydrophobic Mesoporous Carbon Phase for the Continuous Oil Sorption/Filtration from Water. Adv Sustain Syst. 2018;2(7):1-9. doi:10.1002/adsu.201800040
  10. Lin J, Cai Y, Wang X, Ding B, Yu J, Wang M. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale. 2011;3(3):1258-1262. doi:10.1039/c0nr00812e
  11. Chen L, Si Y, Zhu H, Jiang T, Guo Z. A study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/water mixtures and nano-emulsions. J Memb Sci. 2016;520:760-768. doi:10.1016/j.memsci.2016.08.026
  12. Obaid M, Tolba GMK, Motlak M, et al. Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation. Chem Eng J. 2015;279:631-638. doi:10.1016/j.cej.2015.05.028
  13. Lee MW, An S, Latthe SS, Lee C, Hong S, Yoon SS. Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. ACS Appl Mater Interfaces. 2013;5(21):10597-10604. doi:10.1021/am404156k
  14. Haase MF, Jeon H, Hough N, Kim JH, Stebe KJ, Lee D. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation. Nat Commun. 2017;8(1). doi:10.1038/s41467-017-01409-3
  15. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. Conf Rec - IAS Annu Meet (IEEE Ind Appl Soc. 1993;3:1698-1703. doi:10.1109/ias.1993.299067
  16. Ramakrishna S, Fujihara K, Teo W, et al. Chapter 1 - Introduction. Nanotechnology. 1996;7(3):1-21. http://stacks.iop.org/0957-4484/7/i=3/a=009?key=crossref.b62a3c509c723c5a2561f1e345fc1706
  17. Liu F, Hashim NA, Liu Y, Abed MRM, Li K. Progress in the production and modification of PVDF membranes. J Memb Sci. 2011;375(1-2):1-27. doi:10.1016/j.memsci.2011.03.014
  18. Zhang W, Li Y, Liu J, Li B, Wang S. Fabrication of hierarchical poly (vinylidene fluoride) micro/nano-composite membrane with anti-fouling property for membrane distillation. J Memb Sci. 2017;535:258-267. doi:10.1016/j.memsci.2017.04.051
  19. Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T. Electrospun nanofibrous filtration membrane. J Memb Sci. 2006;281(1-2):581-586. doi:10.1016/j.memsci.2006.04.026
  20. Huang F, Wei Q, Cai Y, Wu N. Surface structures and contact angles of electrospun poly(vinylidene fluoride) nanofiber membranes. Int J Polym Anal Charact. 2008;13(4):292-301. doi:10.1080/10236660802190963
  21. Ejaz Ahmed F, Lalia BS, Hilal N, Hashaikeh R. Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation. Desalination. 2014;344:48-54. doi:10.1016/j.desal.2014.03.010
  22. Lalia BS, Guillen-Burrieza E, Arafat HA, Hashaikeh R. Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. J Memb Sci. 2013;428:104-115. doi:10.1016/j.memsci.2012.10.061
  23. Liao Y, Wang R, Tian M, Qiu C, Fane AG. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J Memb Sci. 2013;425-426:30-39. doi:10.1016/j.memsci.2012.09.023
  24. Daoud WA, Xin JH. Nucleation and growth of anatase crystallites on cotton fabrics at low temperatures. J Am Ceram Soc. 2004;87(5):953-955. doi:10.1111/j.1551-2916.2004.00953.x
  25. Daoud WA, Leung SK, Tung WS, Xin JH, Cheuk K, Qi K. Self-cleaning keratins. Chem Mater. 2008;20(4):1242-1244. doi:10.1021/cm702661k
  26. Gao SJ, Shi Z, Zhang W Bin, Zhang F, Jin J. Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano. 2014;8(6):6344-6352. doi:10.1021/nn501851a
  27. Cassie BD. Of porous surfaces,. 1944;(5):546-551.
  28. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental Applications of Semiconductor Photocatalysis. Chem Rev. 1995;95(1):69-96. doi:10.1021/cr00033a004
  29. Khoo HS, Tseng FG. Engineering the 3D architecture and hydrophobicity of methyltrichlorosilane nanostructures. Nanotechnology. 2008;19(34). doi:10.1088/0957-4484/19/34/345603
  30. Wang H, Zhu Y, Hu Z, et al. A novel electrodeposition route for fabrication of the superhydrophobic surface with unique self-cleaning, mechanical abrasion and corrosion resistance properties. Chem Eng J. 2016;303:37-47. doi:10.1016/j.cej.2016.05.133
  31. Li J, Kang R, Tang X, She H, Yang Y, Zha F. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nanoscale. 2016;8(14):7638-7645. doi:10.1039/c6nr01298a
  32. Jiefeng Gao, Xuewu Huang, Huaiguo Xue, Longcheng Tang, Robert K.Y. Li. "Facile preparation of hybrid microspheres for superhydrophobic coating and oil-water separation" , Chemical Engineering Journal, 2017

Downloads

Published

2022-06-30

Issue

Section

Research Articles

How to Cite

[1]
Mohammad Fahim Uddin, Jianyong Feng, " Electrospun Membrane with Ultrafine Fibers for Oil/Water Separation Application, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 9, Issue 3, pp.366-380, May-June-2022. Available at doi : https://doi.org/10.32628/IJSRSET2293117