Prediction Analysis Using deep learning Smart Health Care

Authors

  • Neha Titarmare  Department of CSE, Rajiv Gandhi College of Engineering and Research, Wanadongri, Nagpur, India
  • Sejal Naik  Department of CSE, Rajiv Gandhi College of Engineering and Research, Wanadongri, Nagpur, India
  • Chandu Vaidya  Department of CSE, Rajiv Gandhi College of Engineering and Research, Wanadongri, Nagpur, India
  • Dhanshri Palghamol  Department of CSE, Rajiv Gandhi College of Engineering and Research, Wanadongri, Nagpur, India
  • Prachi Bhajipale  Department of CSE, Rajiv Gandhi College of Engineering and Research, Wanadongri, Nagpur, India
  • Darshana Kale  Department of CSE, Rajiv Gandhi College of Engineering and Research, Wanadongri, Nagpur, India

DOI:

https://doi.org/10.32628/IJSRSET23102120

Keywords:

Keywords— Smart Health hospital, private clinics, symptoms, diagnosis, patient.

Abstract

The purpose of Smart Health Care System is to automate the existing system by providing end to end solution for various departments by dividing the complete application into multiple modules and integrating it with a symptom checker tool. These smart and efficient systems take care of operational aspects so that the healthcare center can concentrate on enhanced patient care. Smart Health Care system is a computer or web-based system that facilitates managing the functioning of the hospital or any medical set up but with a symptom checker tool. Smart Health Care System, as described above can lead to error free, secure, reliable and fast management system. This system provides end-to-end solution for Appointment booking, Viewing Medical records, Initial Diagnosis, Consulting doctor over the web and Billing. This system can be implemented for a single hospital or a chain of private clinics. The other objective is to provide essential online medical assistance to users irrespective of their location. The diagnosis of a disease in most cases depends on a complex combination of clinical and pathological data; this complexity leads to the excessive medical costs affecting the quality of the medical care. This system helps the patient in the initial diagnosis based on the symptoms and allows users to interact with doctors over the web, based on the diagnosis.

References

  1. Abouelmehdi K, Beni-Hessane A, Khaloui H. Big healthcare data: preserving security and privacy. J Big Data. 2018. https:// doi. org/ 10. 1186/ s40537- 017- 0110-7.
  2. Agrawal A, Choudhary A. Health services data: big data analytics for deriving predictive healthcare insights. Health
  3. Serv Eval. 2019. https:// doi. org/ 10. 1007/ 978-1- 4899- 7673-4_ 2-1.
  4. Al Mayahi S, Al-Badi A, Tarhini A. Exploring the potential beneits of big data analytics in providing smart healthcare. In: Miraz MH, Excell P, Ware A, Ali M, Soomro S, editors. Emerging technologies in computing—irst international conference, iCETiC 2018, proceedings (Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST). Cham: Springer; 2018. p. 247–58. https:// doi. org/ 10. 1007/ 978-3- 319-95450-9_ 21.
  5. Bainbridge M. Big data challenges for clinical and precision medicine. In: Househ M, Kushniruk A, Borycki E, editors.Big data, big challenges: a healthcare perspective: background, issues, solutions and research directions. Cham: Springer; 2019. p. 17–31.
  6. Bartus K, Batko K, Lorek P. Business intelligence systems: barriers during implementation. In: Jablonski M, editor. Strategic performance management new concept and contemporary trends. New York: Nova Science Publishers; 2017. p. 299–327. ISBN: 978-1-53612-681-5.
  7. Bartus K, Batko K, Lorek P. Diagnoza wykorzystania big data w organizacjach-wybrane wyniki badan. Informatyka Ekonomiczna. 2017;3(45):9–20.
  8. Bartus K, Batko K, Lorek P. Wykorzystanie rozwiazan business intelligence, competitive intelligence i big data w przedsiebiorstwach województwa slaskiego. Przeglad Organizacji. 2018;2:33–9.
  9. Batko K. Mozliwosci wykorzystania Big Data w ochronie zdrowia. Roczniki Kolegium Analiz Ekonomicznych. 2016;42:267–82.
  10. Bi Z, Cochran D. Big data analytics with applications. J Manag Anal. 2014;1(4):249–65. https:// doi. org/ 10. 1080/ 23270 012. 2014. 992985.
  11. Boerma T, Requejo J, Victora CG, Amouzou A, Asha G, Agyepong I, Borghi J. Countdown to 2030: tracking progress towards universal coverage for reproductive, maternal, newborn, and child health. Lancet. 2018;391(10129):1538–48.
  12. Bollier D, Firestone CM. The promise and peril of big data. Washington, D.C: Aspen Institute, Communications and Society Program; 2010. p. 1–66.
  13. Bose R. Competitive intelligence process and tools for intelligence analysis. Ind Manag Data Syst. 2008;108(4):510–28.
  14. Carter P. Big data analytics: future architectures, skills and roadmaps for the CIO: in white paper, IDC sponsored by SAS. 2011. p. 1–16.
  15. Castro EM, Van Regenmortel T, Vanhaecht K, Sermeus W, Van Hecke A. Patient empowerment, patient participation and patient-centeredness in hospital care: a concept analysis based on a literature review. Patient Educ Couns. 2016;99(12):1923–39.
  16. Chen H, Chiang RH, Storey VC. Business intelligence and analytics: from big data to big impact. MIS Q. 2012;36(4):1165–88.
  17. Chen CP, Zhang CY. Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf Sci. 2014;275:314–47.
  18. Chomiak-Orsa I, Mrozek B. Glówne perspektywy wykorzystania big data w mediach spolecznosciowych. Informatyka Ekonomiczna. 2017;3(45):44–54.
  19. Corsi A, de Souza FF, Pagani RN, et al. Big data analytics as a tool for ighting pandemics: a systematic review of literature. J Ambient Intell Hum Comput. 2021;12:9163–80. https:// doi. org/ 10. 1007/ s12652- 020- 02617-4.

Downloads

Published

2023-05-30

Issue

Section

Research Articles

How to Cite

[1]
Neha Titarmare, Sejal Naik, Chandu Vaidya, Dhanshri Palghamol, Prachi Bhajipale, Darshana Kale "Prediction Analysis Using deep learning Smart Health Care " International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 10, Issue 3, pp.14-22, May-June-2023. Available at doi : https://doi.org/10.32628/IJSRSET23102120