In-Silico Design and Optimization of p-BaSi₂/n-Bi₂S₃ Heterojunction for Enhanced Photovoltaic Performance

Authors

  • Saksham Mathur Anand Niketan International School, Satellite Campus, Ahmedabad, Gujarat, India Author

DOI:

https://doi.org/10.32628/IJSRSET2411432

Keywords:

BaSi2, Bi2S3 ETL, Thin film solar cell, SCAPS-1D, Optimization, Simulation

Abstract

This study aims to explore the integration of Bi2S3 as an electron transport layer (ETL) in BaSi2-based thin-film solar cells for the enhanced performance. Using the globally accepted SCAPS-1D simulation tool, a novel device architecture consisting of Al/SnO2:F/Bi2S3/BaSi2/Ni was systematically designed and optimized. Key optimization parameters include the thicknesses, carrier concentrations, bulk defect densities of each layer, interface defects, operating temperature, and the influence of series and shunt resistance on overall efficiency. The simulation results reveal that a BaSi2 layer with an optimized thickness of 1 µm and a doping concentration of 5 x 1019 cm-3, yields noteworthy outcomes. Specifically, champion efficiency (

Downloads

Download data is not yet available.

References

M. Okil, M. S. Salem, T. M. Abdolkader, and A. Shaker, From Crystalline to Low-cost Silicon-based Solar Cells: a Review, Silicon 2021 14:5, 14(5), 1895-1911 (2021). DOI: https://doi.org/10.1007/s12633-021-01032-4

A.K. Sharma, R. Kumar, P. K. Jha, M. Kumar, N. K. Chourasia, and R. K. Chourasia, Bulk Parameters Effect and Comparative Performance Analysis of p-Si/n-CdS/ALD-ZnO Solar Cell, Silicon, 15(15), 6497-6508 (2023). DOI: https://doi.org/10.1007/s12633-023-02518-z

A.K. Sharma, A. Srivastava, P. K. Jha, R. Kumar, M. Kumar, P. K. Kulriya, N. K. Chourasia, and R. K. Chourasia, Bulk/Interface Defects Engineering and Comparative Performance Analysis of p-Si/n-CdS/ALD-ZnO Heterojunction Solar Cell, Energy Technology, 11(8), 2300169 (2023). DOI: https://doi.org/10.1002/ente.202300169

Sharma, A. K., Srivastava, A., Jha, P. K., Sangani, K., Chourasia, N. K., & Chourasia, R. K. Signal Components and Impedance Spectroscopy of Potential p‐Si/n‐CdS/ALD‐ZnO Solar Cells: EIS and SCAPS‐1D Treatments. Advanced Theory and Simulations, 2400688, (2024). DOI: https://doi.org/10.1002/adts.202400688

Smets, A., Jäger, K., Isabella, O., Van Swaaij, R., & Zeman, M., Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems, Bloomsbury Publishing, (2016).

Suemasu, T., Exploring the possibility of semiconducting BaSi2 for thin-film solar cell applications, Japanese Journal of Applied Physics, 54(7S2), (2015). DOI: https://doi.org/10.7567/JJAP.54.07JA01

Morita, K., Inomata, Y., & Suemasu, T., Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy, Thin Solid Films, 508(1-2), 363-366, (2006). DOI: https://doi.org/10.1016/j.tsf.2005.07.344

Migas, D. B., Shaposhnikov, V. L., & Borisenko, V. E., Isostructural BaSi2, BaGe2 and SrGe2: electronic and optical properties. physica status solidi (b), 244(7), 2611-2618, (2007). DOI: https://doi.org/10.1002/pssb.200642556

Toh, K., Saito, T., & Suemasu, T., Optical absorption properties of BaSi2 epitaxial films grown on a transparent silicon-on-insulator substrate using molecular beam epitaxy. Japanese Journal of Applied Physics, 50(6R), 068001, (2011). DOI: https://doi.org/10.7567/JJAP.50.068001

Kumar, M., Umezawa, N., & Imai, M., (Sr, Ba)(Si, Ge) 2 for thin-film solar-cell applications: first-principles study. Journal of Applied Physics, 115(20), (2014). DOI: https://doi.org/10.1063/1.4880662

Baba, M., Watanabe, K., Hara, K. O., Toko, K., Sekiguchi, T., Usami, N., & Suemasu, T., Evaluation of minority carrier diffusion length of undoped n-BaSi2 epitaxial thin films on Si (001) substrates by electron-beam-induced-current technique. Japanese Journal of Applied Physics, 53(7), 078004, (2014). DOI: https://doi.org/10.7567/JJAP.53.078004

Hara, K. O., Usami, N., Nakamura, K., Takabe, R., Baba, M., Toko, K., & Suemasu, T., Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing. Applied Physics Express, 6(11), 112302, (2013). DOI: https://doi.org/10.7567/APEX.6.112302

Baba, M., Tsurekawa, S., Watanabe, K., Du, W., Toko, K., Hara, K. O., ... & Suemasu, T., Evaluation of potential variations around grain boundaries in BaSi2 epitaxial films by Kelvin probe force microscopy. Applied physics letters, 103(14), (2013). DOI: https://doi.org/10.1063/1.4824335

Tsukahara, D., Yachi, S., Takeuchi, H., Takabe, R., Du, W., Baba, M., ... & Suemasu, T., p-BaSi2/n-Si heterojunction solar cells with conversion efficiency reaching 9.0%. Applied physics letters, 108(15), (2016). DOI: https://doi.org/10.1063/1.4945725

Yachi, S., Takabe, R., Takeuchi, H., Toko, K., & Suemasu, T., Effect of amorphous Si capping layer on the hole transport properties of BaSi2 and improved conversion efficiency approaching 10% in p-BaSi2/n-Si solar cells. Applied Physics Letters, 109(7), (2016). DOI: https://doi.org/10.1063/1.4961309

Deng, Q., Chen, H., Liao, H., Chen, L., Wang, G., Wang, S., & Shen, Y., Numerical simulation and optimization of Si/BaSi2 heterojunction and BaSi2 homojunction solar cells. Journal of Physics D: Applied Physics, 52(7), 075501, (2018). DOI: https://doi.org/10.1088/1361-6463/aaf403

Vismara, R., Isabella, O., & Zeman, M., Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells. In Photonics for Solar Energy Systems VI (Vol. 9898, pp. 54-62). SPIE, 2016. DOI: https://doi.org/10.1117/12.2227174

Chen, L., Chen, H., Deng, Q., Wang, G., & Wang, S., Numerical simulation of planar BaSi2 based Schottky junction solar cells toward high efficiency. Solid-State Electronics, 149, 46-51, (2018). DOI: https://doi.org/10.1016/j.sse.2018.08.008

Moon, M. M. A., Ali, M. H., Rahman, M. F., Kuddus, A., Hossain, J., & Ismail, A. B. M., Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell. Physica Scripta, 95(3), 035506, (2020). DOI: https://doi.org/10.1088/1402-4896/ab49e8

Rahman, M. F., Shanto, M. A. B., Ali, M. A., Marasamy, L., Benami, A., Chaudhry, A. R., & Irfan, A., A new exploration of the impact of different wide-bandgap S-chalcogenides Electron Transport Layers (ETL) on the performance of BaSi2-based solar cells. Emergent Materials, 1-17, (2024). DOI: https://doi.org/10.1007/s42247-024-00821-y

Lim, E. L., Yap, C. C., Jumali, M. H. H., Teridi, M. A. M., & Teh, C. H., Inverted organic solar cells integrated with room temperature solution-processed bismuth sulfide electron selective layer. Solar Energy, 157, 1108-1113, (2017). DOI: https://doi.org/10.1016/j.solener.2017.08.042

Liang, Z., Zhang, Q., Jiang, L., & Cao, G., ZnO cathode buffer layers for inverted polymer solar cells. Energy & Environmental Science, 8(12), 3442-3476, (2015). DOI: https://doi.org/10.1039/C5EE02510A

Pandya, A., Sharma, A. K., Bhatt, M., Jha, P. K., Sangani, K., Chourasia, N. K., & Chourasia, R. K., A synergy of Cr2O3 with eco‐friendly and thermally stable CsSnCl3 perovskite for solar energy storage: Density functional theory and SCAPS‐1D analysis. Energy Storage, 6(5), e70001, (2024). DOI: https://doi.org/10.1002/est2.70001

Moreno-García, H., Messina, S., Calixto-Rodriguez, M., & Martínez, H., Physical properties of chemically deposited Bi2S3 thin films using two post-deposition treatments. Applied surface science, 311, 729-733, (2014). DOI: https://doi.org/10.1016/j.apsusc.2014.05.147

Rahman, M. M., Ali, M. H., Haque, M. D., & Islam, A. Z. M. T., Numerical modeling and extensive analysis of an extremely efficient RbGeI 3-based perovskite solar cell by incorporating a variety of ETL and HTL materials to enhance PV performance. Energy Advances, 3(9), 2377-2398, (2024). DOI: https://doi.org/10.1039/D4YA00323C

Burgelman, M., Decock, K., Niemegeers, A., Verschraegen, J. & Degrave, S. SCAPS manual. in (2023).

Shukla, R., Kumar, R. R. & Pandey, S. K. Theoretical Study of Charge Carrier Lifetime and Recombination on the Performance of Eco-Friendly Perovskite Solar Cell. IEEE Trans Electron Devices 68, 3446–3452 (2021). DOI: https://doi.org/10.1109/TED.2021.3078063

Vincent Mercy, E. N., Srinivasan, D., & Marasamy, L., Emerging BaZrS3 and Ba (Zr, Ti) S3 chalcogenide perovskite solar cells: A numerical approach toward device engineering and unlocking efficiency. ACS omega, 9(4), 4359-4376, (2024). DOI: https://doi.org/10.1021/acsomega.3c06627

Pineda, E., Nicho, M. E., Nair, P. K., & Hu, H., Optoelectronic properties of chemically deposited Bi2S3 thin films and the photovoltaic performance of Bi2S3/P3OT solar cells. Solar Energy, 86(4), 1017-1022, (2012). DOI: https://doi.org/10.1016/j.solener.2011.06.015

Downloads

Published

29-10-2024

Issue

Section

Research Articles

How to Cite

[1]
Saksham Mathur, “In-Silico Design and Optimization of p-BaSi₂/n-Bi₂S₃ Heterojunction for Enhanced Photovoltaic Performance”, Int J Sci Res Sci Eng Technol, vol. 11, no. 5, pp. 293–305, Oct. 2024, doi: 10.32628/IJSRSET2411432.

Similar Articles

1-10 of 21

You may also start an advanced similarity search for this article.