Application And Impact of Artificial Intelligence in Financial Decision Making
DOI:
https://doi.org/10.32628/IJSRSET2411417Keywords:
Fraud Detection, Artificial Intelligence, AI Advancements, Machine Learning, Predictive Analytics, Irregularities, Anomalous Patterns, Advanced Algorithms, Fraudulent Behavior, Compliance, Risk Management, Financial Markets, Wealth Management, Asset Management, AI-Driven Tools, Financial Decision-Making, Mixed-Methods Approach, Technology Adoption, ChallengesAbstract
AI in finance refers to the application of AI techniques in financial businesses. With the proliferation of AI-based tools and algorithms in financial decision-making, it is increasingly necessary to assess the impact of these technologies on the investment strategies and results of individual investors. The integration of artificial intelligence (AI) in financial decision-making heralds a technological revolution in the sector, which offers enormous potential benefits and significant challenges. This review aims to unravel the complexity surrounding AI in finance, focusing on identifying and addressing barriers to its effective implementation. Looking ahead, the article anticipates future trends and challenges in AI-driven finance, urging stakeholders to collaborate for sustainable innovation. Overall, AI offers tremendous potential for financial transformation, but careful consideration of ethical and regulatory issues is essential for long-term success.
Downloads
References
Longbing Cao. 2021. AI in Finance: Challenges, Techniques and Opportunities. 1, 1 (June 2021), 40 pages. https://arxiv.org/pdf/2107.09051
Douglas W. Arner, Janos Nathan Barberis, and Ross P. Buckley. 2015. The Evolution of Fintech: A New Post-Crisis Paradigm? (2015). http://dx.doi.org/10.2139/ssrn.2676553 DOI: https://doi.org/10.2139/ssrn.2676553
Henri Arslanian and Fabrice Fischer. 2019. The Future of Finance: The Impact of FinTech, AI, and Crypto on Financial Services. Palgrave Macmillan. DOI: https://doi.org/10.1007/978-3-030-14533-0
Adams, M., et al. (2020). Understanding Emotional Responses to AI in Stock Market Decision-Making. Journal of Behavioral Finance, 18(4), 321-335. https://doi.org/10.1080/15427560.2020.1816912
Baker, K., et al. (2019). Human-AI Collaboration Models in Financial Decision-Making. Journal of Artificial Intelligence in Finance, 25(3), 187-202. https://doi.org/10.1016/j.jaif.2019.06.00
Bao, Y., Hilary, G., & Ke, B. (2022). Artificial Intelligence and Fraud Detection. In V. Babich, J. R. Birge, & G. Hilary, Innovative Technology at the Interface of Finance and Operations (S. 223-243). Springer. doi:doi.org/10.1007 DOI: https://doi.org/10.1007/978-3-030-75729-8_8
Gegenmantel, R. (2020). Planung verändern mit neuer Technologie. Controlling & Management Review, 40-45. DOI: https://doi.org/10.1007/s12176-020-0094-6
B. Nemade and D. Shah, “An IoT-Based Efficient Water Quality Prediction System for Aquaponics Farming,” in Computational Intelligence: Select Proceedings of InCITe 2022, Singapore: Springer Nature Singapore, 2023, pp. 311-323. [Online]. Available: https://doi.org/10.1007/978-981-19-7346-8_27. DOI: https://doi.org/10.1007/978-981-19-7346-8_27
Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance, 2767-2787. doi:doi.org/10.1016/j.jbankfin.2010.06.001 DOI: https://doi.org/10.1016/j.jbankfin.2010.06.001
Kögel, H., Spindler, M., & Wasserbacher, H. (2022). Digital Finance – Die Zukunft der Finanzplanung in Unternehmen. Arbeitswelt und KI 2030, 175-182. doi:doi.org/10.1007/978-3-658-35779-5_18. DOI: https://doi.org/10.1007/978-3-658-35779-5_18
Liu, B. (2012). Sentiment Analysis and Opinion Mining. Springer. doi:doi.org/10.1007/978-3-031-02145-9. DOI: https://doi.org/10.1007/978-3-031-02145-9
B. Nemade and D. Shah, “IoT-based Water Parameter Testing in Linear Topology,” in 2020 10th International Conference on Cloud Computing, Data Science and Engineering (Confluence), Noida, India, 2020, pp. 546-551, doi: 10.1109/Confluence47617.2020.9058224. DOI: https://doi.org/10.1109/Confluence47617.2020.9058224
Daube, Carl Heinz (2024) Artificial intelligence in financial and investment decision-making, Working Papers des IUCF, No. 2/2024, ZBW – Leibniz Information Centre for Economics, Kiel, Hamburg.
OECD. (2021). Artificial Intelligence, Machine Learning and Big Data in Finance: Opportunities, Challenges, and Implications for Policy Makers. doi:10.13140/RG.2.2.27950.18248.
Ralph, O., Weinland, D., & Arnold, M. (29. 10 2018). Chinese Banks Start Scanning Borrowers’ Facial Movements. Financial Times. https://www.mckinsey.com/featured-insights/mckinsey explainers/what-is-generative-ai retrieved Jan. 3rd, 2024.
Asha Kumari, Dr. Batani Raghavendra Rao (2024). A Study On Artificial Intelligence In Financial Decision Making. International Journal of Research Publication and Reviews, Vol (5), Issue (4), April (2024), Page – 4371-4375.
Ionescu, S. A., & Diaconita, V. (2023). Transforming Financial Decision-Making: The Interplay of AI, Cloud Computing and Advanced Data Management Technologies. International Journal of Computers Communications & Control, 18(6). DOI: https://doi.org/10.15837/ijccc.2023.6.5735
Ren, J. (2021). Research on financial investment decision based on artificial intelligence algorithm. IEEE Sensors Journal, 21(22), 25190-25197. DOI: https://doi.org/10.1109/JSEN.2021.3104038
Rise of AI and ML in Financial Decision-Making Process - Veritis Group. https://www.veritis.com/blog/rise-of-ai-and-ml-in-financial-decision-making-processes
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science, Engineering and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.