A Review on Robust Credit Card Fraud Detection System Leveraging Big Data and Machine Learning

Authors

  • Radhika Dorlikar Student at Department of Computer Science and Engineering, BDCE, Sevagram, Wardha, Maharashtra, India Author
  • Dr. Sudhir W. Mohod Professor & HOD at Department of Computer Science and Engineering, BDCE, Sevagram, Wardha, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRSET2411425

Keywords:

Credit Card Fraud Detection, Big Data, Machine Learning, Anomaly Detection, Real-Time Monitoring, Data Security

Abstract

This review offers a detailed strategy to address the growing threat of credit card fraud in today's digital landscape. By utilizing Big Data analytics alongside machine learning methods, the system aims to transform fraud detection processes. It tackles the challenges arising from the increasing volume and complexity of credit card transactions, enabling the real-time detection and prevention of fraudulent actions. The system employs sophisticated machine learning algorithms to identify patterns and anomalies linked to fraudulent activities, allowing for proactive responses to emerging fraud tactics. Additionally, the system is optimized to handle and analyze large datasets efficiently, ensuring timely and precise detection of fraud. It also incorporates strong security protocols to protect sensitive customer data while adhering to privacy regulations. This review ultimately seeks to enhance the safety and reliability of electronic payments, protecting financial institutions and consumers from the harmful effects of credit card fraud.

Downloads

Download data is not yet available.

References

Fanai, H., & Abbasimehr, H. (2023). A novel combined approach based on deep Autoencoder and deep classifiers for credit card fraud detection. Expert Systems With Applications, 217,119562. https://doi.org/10.1016/j.eswa.2023.119562 DOI: https://doi.org/10.1016/j.eswa.2023.119562

Cherif, A., Badhib, A., Ammar, H., Alshehri, S., Kalkatawi, M., & Imine, A. (2023). Credit card fraud detection in the era of disruptive technologies: A systematic review. Journal of King Saud University - Computer and Information Sciences, 35(1), 145–174. https://doi.org/10.1016/j.jksuci.2022.11.008 DOI: https://doi.org/10.1016/j.jksuci.2022.11.008

Carcillo, F., Pozzolo, A. D., Borgne, Y. L., Caelen, O., Mazzer, Y., & Bontempi, G. (2018). SCARFF: A scalable framework for streaming credit card fraud detection with spark. Information Fusion, 41, 182–194. https://doi.org/10.1016/j.inffus.2017.09.005 DOI: https://doi.org/10.1016/j.inffus.2017.09.005

Gupta, P., Varshney, A., Khan, M. R., Ahmed, R., Shuaib, M., & Alam, S. (2023). Unbalanced Credit Card Fraud Detection Data: A Machine Learning-Oriented Comparative Study of Balancing Techniques. Procedia Computer Science, 218, 2575–2584. https://doi.org/10.1016/j.procs.2023.01.231 DOI: https://doi.org/10.1016/j.procs.2023.01.231

Madhuri, T., Babu, E. R., Uma, B., & Lakshmi, B. M. (2021). Big-data driven approaches in materials science for real-time detection and prevention of fraud. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.04.323 DOI: https://doi.org/10.1016/j.matpr.2021.04.323

Vaughan, G. (2020). Efficient big data model selection with applications to fraud detection. International Journal of Forecasting, 36(3), 1116–1127. https://doi.org/10.1016/j.ijforecast.2018.03.002 DOI: https://doi.org/10.1016/j.ijforecast.2018.03.002

Maniraj, S. P., Saini, A., Ahmed, S., & Sarkar, S. D. (2019). Credit Card Fraud Detection using Machine Learning and Data Science. International Journal of Engineering Research & Technology (IJERT), 8(9), 1–8. https://doi.org/10.17577/IJERTV8IS090031 DOI: https://doi.org/10.17577/IJERTV8IS090031

Saheed, Y. K., Baba, U. A., & Raji, M. A. (2022). Big Data Analytics for Credit Card Fraud Detection Using Supervised Machine Learning Models. In Big Data Analytics in the Insurance Market (pp. 1-15). ISBN: 978-1-80262-638-4, eISBN: 978-1-80262-637-7. https://doi.org/10.1108/978-1-80262-637- 720221019

Zareapoor, M., Seeja, K. R., & Alam, M. A. (2012). Analysis on credit card fraud detection techniques: Based on certain design criteria. International Journal of Computer Applications, 52(3), 35–42. https://doi.org/10.5120/8184-1538 DOI: https://doi.org/10.5120/8184-1538

Alenzi, H. Z., & Aljehane, N. O. (2020). Fraud detection in credit cards using logistic regression. International Journal of Advanced Computer Science and Applications, 11(12). https://doi.org/10.14569/ijacsa.2020.0111265 DOI: https://doi.org/10.14569/IJACSA.2020.0111265

Sailusha, R., Gnaneswar, V., Ramesh, R., & Rao, R. R. Credit card fraud detection using machine learning. Proceedings of the International Conference on Intelligent Computing and Control Systems (ICICCS 2020). DOI: https://doi.org/10.1109/ICICCS48265.2020.9121114

Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017). Credit card fraud detection using machine learning techniques: A comparative analysis. 2017 International Conference on Computing Networking and Informatics (ICCNI). https://doi.org/10.1109/iccni.2017.8123782 DOI: https://doi.org/10.1109/ICCNI.2017.8123782

Tanouz, D., Subramanian, R. R., Eswar, D., Reddy, G. V., Kumar, A. R., & Praneeth, C. H. V. (2021). Credit card fraud detection using machine learning. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). https://doi.org/10.1109/iciccs51141.2021.9432308 DOI: https://doi.org/10.1109/ICICCS51141.2021.9432308

Kiran, S., Guru, J., Kumar, R., Kumar, N., Katariya, D., & Sharma, M. (2018). Credit card fraud detection using Naïve Bayes model based and KNN classifier. International Journal of Advance Research, Ideas and Innovations in Technology, 4(3).

Saheed, Y. K., Hambali, M. A., Arowolo, M. O., & Olasupo, Y. A. (2020). Application of GA feature selection on Naive Bayes, random forest and SVM for credit card fraud detection. 2020 International Conference on Decision Aid Sciences and Application (DASA). https://doi.org/10.1109/dasa51403.2020.9317228 DOI: https://doi.org/10.1109/DASA51403.2020.9317228

Daly, L. (2021, October 27). Identity theft and credit card fraud statistics for 2021: The Ascent. The Motley Fool. Retrieved from https://www.fool.com/theascent/research/identity- theft-credit-card-fraud-statistics/

Maes, S., Tuyls, K., Vanschoenwinkel, B., & Manderick, B. (2002). Credit card fraud detection using Bayesian and neural networks. Proceedings of the 1st International Naiso Congress on Neuro Fuzzy Technologies, 261-270.

Wasokun GB, Omomule TG, Akinyede RO.Encryption and tokenization-based system for credit card information security. Int J Cyber Sec Digital Forensics. 2018;7(3):283–93. DOI: https://doi.org/10.17781/P002462

Burkov, A. (2019). The Hundred-Page Machine Learning Book (pp. 3–5).

Dornadula VN, Geetha S.Credit card fraud detection using machine learning algorithms. Proc Comput Sci. 2019;165:631–41. https://doi.org/10.1016/j.procs.2020.01.057 DOI: https://doi.org/10.1016/j.procs.2020.01.057

Lebichot, B., Borgne, Y.-A. L., He-Guelton, L., Oblé, F., & Bontempi, G. (2019). Deep-learning domain adaptation techniques for credit card fraud detection. *In INNS Big Data and Deep Learning Conference* (pp. 78-88). Springer. https://doi.org/10.1007/978-3-030-11799-6_10 DOI: https://doi.org/10.1007/978-3-030-16841-4_8

Raghavan, P., & El Gayar, N. (2019). Fraud detection using machine learning and deep learning. *2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)* (pp. 334-339). https://doi.org/10.1109/ICCIKE.2019.8920882 DOI: https://doi.org/10.1109/ICCIKE47802.2019.9004231

Dal Pozzolo, A., Caelen, O., Le Borgne, Y.-A., Waterschoot, S., & Bontempi, G. (2014). Learned lessons in credit card fraud detection from a practitioner perspective. *Expert Systems with Applications, 41*(10), 4915-4928. https://doi.org/10.1016/j.eswa.2014.02.011 DOI: https://doi.org/10.1016/j.eswa.2014.02.026

Pillai, T. R., Hashem, I. A. T., Brohi, S. N., Kaur, S., & Marjani, M. (2018). Credit card fraud detection using deep learning technique. *2018 Fourth International Conference on Advances in Computing Communication & Automation (ICACCA)* https://doi.org/10.1109/ICACCA.2018.8377038 DOI: https://doi.org/10.1109/ICACCAF.2018.8776797

Kazemi, Z., & Zarrabi, H. (2017). Using deep networks for fraud detection in credit card transactions. *2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI)* (pp. 0630-0633). https://doi.org/10.1109/KBEI.2017.8311471 DOI: https://doi.org/10.1109/KBEI.2017.8324876

Shenvi, P., Samant, N., Kumar, S., & Kulkarni, V. (2019). Credit card fraud detection using deep learning. *2019 IEEE 5th International Conference for Convergence in Technology (I2CT)* (pp. 1-5). https://doi.org/10.1109/I2CT45612.2019.906568 2 DOI: https://doi.org/10.1109/I2CT45611.2019.9033906

Fiore, U., De Santis, A., Perla, F., Zanetti, P., & Palmieri, F. (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. *Information Sciences, 479*, 448-455. https://doi.org/10.1016/j.ins.2018.12.015 DOI: https://doi.org/10.1016/j.ins.2017.12.030

Bahnsen, A. C., Aouada, D., Stojanovic, J., & Ottersten, B. (2016). Feature engineering strategies for credit card fraud detection. *Expert Systems with Applications, 51*, 134-142. https://doi.org/10.1016/j.eswa.2016.01.031 DOI: https://doi.org/10.1016/j.eswa.2015.12.030

Mekterović, I., Karan, M., Pintar, D., & Brkić, L. (2021). Credit card fraud detection in card-not- present transactions: Where to invest? *Applied Sciences, 11*(15), 6766. https://doi.org/10.3390/app11156766 DOI: https://doi.org/10.3390/app11156766

Carcillo, F., Le Borgne, Y.-A., Caelen, O., Kessaci, Y., Oble, F., & Bontempi, G. (2021). Combining unsupervised and supervised learning in credit card fraud detection. *Information Sciences, 557*, 317-331. https://doi.org/10.1016/j.ins.2020.12.058 DOI: https://doi.org/10.1016/j.ins.2019.05.042

Lakshmi, S., & Kavilla, S. D. (2018). Machine learning for credit card fraud detection system. *International Journal of Applied Engineering Research, 13*(24), 16819-16824. https://doi.org/10.37622/IJAER/13.24.2018.16819-16824

A. Alshammari, R. Alshammari, M. Altalak, K. Alshammari and A. Alhakamy, "Credit-card Fraud Detection System using Big Data Analytics," 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Maldives, Maldives, 2022, pp. 1-7, doi: 10.1109/ICECCME55909.2022.9987791. DOI: https://doi.org/10.1109/ICECCME55909.2022.9987791

Pandey, N., Rajeshwari, S., Shobha Rani, B. N., & Mounica, B. (2018). Credit card fraud detection using big data framework. *International Journal of Creative Research Thoughts (IJCRT), 6*(2), 523.

Patil, S., Nemade, V., & Soni, P. K. (2018). Predictive modelling for credit card fraud detection using data analytics. Dept of Computer Engineering, Mukesh Patel School of Technology Management and Engineering, NMIMS, Shirpur Campus, India. Available online 8 June 2018. https://doi.org/10.1016/j.procs.2018.05.199 DOI: https://doi.org/10.1016/j.procs.2018.05.199

Mashruwala, A. (2024). Fraud detection and prevention in financial services using big data analytics. *ResearchGate*. https://doi.org/10.13140/RG.2.2.16018.26561

Kamaruddin, S., & Ravi, V. (n.d.). Credit card fraud detection using big data analytics: Use of PSOAANN-based one-class classification. Institute for Development and Research in Banking Technology, Hyderabad, India.

Sathyapriya, M., & Thiagarasu, V. (2017). Big data analytics techniques for credit card fraud detection: A review. In Proceedings of the conference on Computer Science and Business. https://api.semanticscholar.org/CorpusID:5304956 7

Siddaraju, D., Sowmya, R., & Rahul, R. (2014). Efficient analysis of big data using MapReduce framework. In Proceedings of the conference on Big Data Analytics. Retrieved from https://api.semanticscholar.org/CorpusID:212503 625

You, D., Jin, Y., Tang, X., Zhao, H., & Guo, M. (2016). Online Credit Card Fraud Detection: A Hybrid Framework with Big Data Technologies. IEEE. https://doi.org/10.1109/trustcom.2016.0253 DOI: https://doi.org/10.1109/TrustCom.2016.0253

Airlangga, G. (2024). Evaluating the Efficacy of Machine Learning Models in Credit Card Fraud Detection. Journal of Computer Networks, Architecture and High Performance Computing, 6(2), 829-837. https://doi.org/10.47709/cnahpc.v6i2.3814 DOI: https://doi.org/10.47709/cnahpc.v6i2.3814

Lokesh, R., Vaishnavi, & Aundhakar, S. (2023). Credit Card Fraud Detection using Big Data Technologies. International Journal of Advanced Research in Science, Communication and Technology, 3(2), 783-788. https://doi.org/10.48175/IJARSCT-8040 DOI: https://doi.org/10.48175/IJARSCT-8040

Downloads

Published

20-10-2024

Issue

Section

Research Articles

How to Cite

[1]
Radhika Dorlikar and Dr. Sudhir W. Mohod, “A Review on Robust Credit Card Fraud Detection System Leveraging Big Data and Machine Learning”, Int J Sci Res Sci Eng Technol, vol. 11, no. 5, pp. 248–264, Oct. 2024, doi: 10.32628/IJSRSET2411425.

Similar Articles

1-10 of 133

You may also start an advanced similarity search for this article.