3D Printing and Smart Farming: Transforming Food Processing and Post-Harvest Technology
DOI:
https://doi.org/10.32628/IJSRSET25122102Keywords:
Smart farming, Precision agriculture, Food Processing, Sustainability, Artificial Intelligence, IoTAbstract
One of the greatest revolutions in food processing and agriculture has been the combination of 3D printing and smart agricultural technology in response to the urgent demands for waste reduction, sustainability, and food security. It covers how innovative technologies in modern agriculture can be used-from their perspective in precision farming, custom food production, sustainable resource management, to post-harvest technology. This is because IoT, AI, and additive manufacturing power provide real-time monitoring of environmental parameters for optimizing crop health management and resource use and open up opportunities for customization of food products through 3D printed customized food products, biodegradable packaging, and on-demand equipment manufacturing. These regions would face huge up-front costs, little technological know-how, many regulatory constrictions, and also severe infrastructure deficiencies in applying and adopting the two technologies, respectively. Future work or research regarding the above two technologies needs to come from cost efficiencies, policymaking, scalability, as well as no faults to enable both full potentials for proper, effective working. This paper will conclude by mentioning that even so, there will remain a pressing need for more advanced forms of interdisciplinary cooperation as well as public education in order to achieve the maximum benefits of such technologies towards attaining a more resilient and sustainable global food system.
Downloads
References
M. Padhiary and R. Kumar, “Assessing the Environmental Impacts of Agriculture, Industrial Operations, and Mining on Agro-Ecosystems,” in Smart Internet of Things for Environment and Healthcare, M. Azrour, J. Mabrouki, A. Alabdulatif, A. Guezzaz, and F. Amounas, Eds., Cham: Springer Nature Switzerland, 2024, pp. 107–126. doi: 10.1007/978-3-031-70102-3_8.
B. Nath, G. Chen, C. M. O’Sullivan, and D. Zare, “Research and Technologies to Reduce Grain Postharvest Losses: A Review,” Foods, vol. 13, no. 12, p. 1875, Jun. 2024, doi:10.3390/foods13121875.
M. Padhiary, J. A. Barbhuiya, D. Roy, and P. Roy, “3D printing applications in smart farming and food processing,” Smart Agric. Technol., vol. 9, p. 100553, Dec. 2024, doi:10.1016/j.atech.2024.100553.
V. C. S.S., A. H. S., and G. F. Albaaji, “Precision farming for sustainability: An agricultural intelligence model,” Comput. Electron. Agric., vol. 226, p. 109386, Nov. 2024, doi:10.1016/j.compag.2024.109386.
M. Padhiary, “The Convergence of Deep Learning, IoT, Sensors, and Farm Machinery in Agriculture:,” in Designing Sustainable Internet of Things Solutions for Smart Industries, S. G.Thandekkattu and N. R. Vajjhala, Eds., IGI Global, 2024, pp. 109–142. doi: 10.4018/979-8-3693-5498- 8.ch005.
C. Li and M. Wang, “Pest and disease management in agricultural production with artificial intelligence: Innovative applications and development trends,” Jul. 18, 2024, Resources Economics Research Board: 3. doi: 10.50908/arr.4.3_381.
T. Domingues, T. Brandão, and J. C. Ferreira, “Machine Learning for Detection and Prediction of Crop Diseases and Pests: A Comprehensive Survey,” Agriculture, vol. 12, no. 9, p. 1350, Sep. 2022, doi: 10.3390/agriculture12091350.
P. Chandra Pandey, A. K. Tripathi, and J. K. Sharma, “An evaluation of GPS opportunity in market for precision agriculture,” in GPS and GNSS Technology in Geosciences, Elsevier, 2021, pp. 337–349. doi: 10.1016/B978-0-12-818617-6.00016-0.
G. Bagagiolo, G. Matranga, E. Cavallo, and N. Pampuro, “Greenhouse Robots: Ultimate Solutions to Improve Automation in Protected Cropping Systems—A Review,” Sustainability, vol. 14, no. 11, p. 6436, May 2022, doi: 10.3390/su14116436.
K. Kanishka and B. Acherjee, “Revolutionizing manufacturing: A comprehensive overview of additive manufacturing processes, materials, developments, and challenges,” J. Manuf. Process., vol. 107, pp. 574–619, Dec. 2023, doi: 10.1016/j.jmapro.2023.10.024.
M. Padhiary and P. Roy, “Advancements in Precision Agriculture: Exploring the Role of 3D Printing in Designing All-Terrain Vehicles for Farming Applications,” Int. J. Sci. Res., vol. 13, no. 5, pp. 861–868, 2024, doi: 10.21275/SR24511105508.
A. Oliveira-Jr et al., “IoT Sensing Platform as a Driver for Digital Farming in Rural Africa,” Sensors, vol. 20, no. 12, p. 3511, Jun. 2020, doi: 10.3390/s20123511.
O. Miller, C. J. Scarlett, and T. O. Akanbi, “Plant-Based Meat Analogues and Consumer Interest in 3D-Printed Products: A Mini-Review,” Foods, vol. 13, no. 15, p. 2314, Jul. 2024, doi: 10.3390/foods13152314.
A. Vellingiri, R. Kokila, P. Nisha, M. Kumar, S. Chinnusamy, and S. Boopathi, “Harnessing GPS, Sensors, and Drones to Minimize Environmental Impact: Precision Agriculture,” in Advances in Business Information Systems and Analytics, S. G. Thandekkattu and N. R. Vajjhala, Eds., IGI Global, 2024, pp. 77–108. doi: 10.4018/979-8-3693-5498-8.ch004.
M. A. Kashem, M. Shamsuddoha, T. Nasir, and A. A. Chowdhury, “Supply Chain Disruption versus Optimization: A Review on Artificial Intelligence and Blockchain,” Knowledge, vol. 3, no. 1, pp. 80–96, Feb. 2023, doi: 10.3390/knowledge3010007.
T. Kaul et al., “CRISPR/Cas Enables the Remodeling of Crops for Sustainable Climate-Smart Agriculture and Nutritional Security,” in Global Climate Change and Plant Stress Management, 1st ed., M. W. Ansari, A. K. Singh, and N. Tuteja, Eds., Wiley, 2023, pp. 71–111. doi: 10.1002/9781119858553.ch9.
J. Gattorna, Strategic Supply Chain Alignment: Best Practice in Supply Chain Management, 6th ed. Florence: Taylor and Francis, 1998.
M. Padhiary and P. Roy, “Collaborative Marketing Strategies in Agriculture for Global Reach and Local Impact,” in Emerging Trends in Food and Agribusiness Marketing, IGI Global, 2025, pp. 219–252. doi: 10.4018/979-8-3693-6715-5.ch008.
A. Hoque and M. Padhiary, “Automation and AI in Precision Agriculture: Innovations for Enhanced Crop Management and Sustainability,” Asian J. Res. Comput. Sci., vol. 17, no. 10, pp. 95– 109, Oct. 2024, doi: 10.9734/ajrcos/2024/v17i10512.
M. Padhiary and R. Kumar, “Enhancing Agriculture Through AI Vision and Machine Learning: The Evolution of Smart Farming,” in Advancements in Intelligent Process Automation, D. Thangam, Ed., IGI Global, 2024, pp. 295–324. doi: 10.4018/979-8-3693-5380-6.ch012.
M. Padhiary, P. Roy, P. Dey, and B. Sahu, “Harnessing AI for Automated Decision-Making in Farm Machinery and Operations: Optimizing Agriculture,” in Advances in Computational Intelligence and Robotics, S. Hai-Jew, Ed., IGI Global, 2024, pp. 249–282. doi: 10.4018/979-8-3693-6230-3.ch008.
G. Bagagiolo, G. Matranga, E. Cavallo, and N. Pampuro, “Greenhouse Robots: Ultimate Solutions to Improve Automation in Protected Cropping Systems—A Review,” Sustainability, vol. 14, no. 11, p. 6436, May 2022, doi: 10.3390/su14116436.
K. Sakadevan and M.-L. Nguyen, “Livestock Production and Its Impact on Nutrient Pollution and Greenhouse Gas Emissions,” in Advances in Agronomy, vol. 141, Elsevier, 2017, pp. 147–184. doi: 10.1016/bs.agron.2016.10.002.
A. I. Sunny, A. Zhao, L. Li, and S. K. Kanteh Sakiliba, “Low-Cost IoT-Based Sensor System: A Case Study on Harsh Environmental Monitoring,” Sensors, vol. 21, no. 1, p. 214, Dec. 2020, doi: 10.3390/s21010214.
M. Padhiary, S. V. Tikute, D. Saha, J. A. Barbhuiya, and L. N. Sethi, “Development of an IOT- Based Semi-Autonomous Vehicle Sprayer,” Agric. Res., vol. 13, no. 3, Jun. 2024, doi: 10.1007/s40003- 024-00760-4.
P. C. Coradi, É. Lutz, N. Dos Santos Bilhalva, L. B. A. Jaques, M. M. Leal, and L. P. R. Teodoro, “Prototype wireless sensor network and Internet of Things platform for real-time monitoring of intergranular equilibrium moisture content and predict the quality corn stored in silos bags,” Expert Syst. Appl., vol. 208, p. 118242, Dec. 2022, doi: 10.1016/j.eswa.2022.118242.
P. Watkins, J. Hughes, T. V. Gamage, K. Knoerzer, M. L. Ferlazzo, and R. B. Banati, “Long term food stability for extended space missions: a review,” Life Sci. Space Res., vol. 32, pp. 79–95, Feb. 2022, doi: 10.1016/j.lssr.2021.12.003.
S. Kharche and J. Kharche, “6G Intelligent Healthcare Framework: A Review on Role of Technologies, Challenges and Future Directions,” J. Mob. Multimed., Feb. 2023, doi: 10.13052/jmm1550-4646.1931.
P. Thorakkattu et al., “3D printing: trends and approaches toward achieving long-term sustainability in the food industry,” Crit. Rev. Biotechnol., vol. 45, no. 1, pp. 48–68, Jan. 2025, doi: 10.1080/07388551.2024.2344577.
K. Sakadevan and M.-L. Nguyen, “Livestock Production and Its Impact on Nutrient Pollution and Greenhouse Gas Emissions,” in Advances in Agronomy, vol. 141, Elsevier, 2017, pp. 147–184. doi: 10.1016/bs.agron.2016.10.002.
S. Portanguen, P. Tournayre, J. Sicard, T. Astruc, and P.-S. Mirade, “Toward the design of functional foods and biobased products by 3D printing: A review,” Trends Food Sci. Technol., vol. 86, pp. 188–198, Apr. 2019, doi: 10.1016/j.tifs.2019.02.023.
M. K. Anser, M. A. Khan, A. A. Nassani, A. M. Aldakhil, X. Hinh Voo, and K. Zaman, “Relationship of environment with technological innovation, carbon pricing, renewable energy, and global food production,” Econ. Innov. New Technol., vol. 30, no. 8, pp. 807–842, Nov. 2021, doi: 10.1080/10438599.2020.1787000.
N. Khan et al., “Potential Role of Technology Innovation in Transformation of Sustainable Food Systems: A Review,” Agriculture, vol. 11, no. 10, p. 984, Oct. 2021, doi: 10.3390/agriculture11100984.
H.-G. Chen and Y.-H. P. Zhang, “New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security,” Renew. Sustain. Energy Rev., vol. 47, pp. 117–132, Jul. 2015, doi: 10.1016/j.rser.2015.02.048.
O. A. ElFar, C.-K. Chang, H. Y. Leong, A. P. Peter, K. W. Chew, and P. L. Show, “Prospects of Industry 5.0 in algae: Customization of production and new advance technology for clean bioenergy generation,” Energy Convers. Manag. X, vol. 10, p. 100048, Jun. 2021, doi: 10.1016/j.ecmx.2020.100048.
F. Z. MOUSSAID, H. BACHEGOUR, M. JERRY, and A. QAFAS, “Enhancing Resilience in Food Systems: A Comprehensive Review of Innovative Measures,” Aug. 2023, doi:10.5281/ZENODO.8299459.
Y. Li et al., “Blue source-based food alternative proteins: Exploring aquatic plant-based and cell-based sources for sustainable nutrition,” Trends Food Sci. Technol., vol. 147, p. 104439, May 2024, doi: 10.1016/j.tifs.2024.104439.
M. Padhiary, “Harmony under the Sun: Integrating Aquaponics with Solar-Powered Fish Farming,” in Introduction to Renewable Energy Storage and Conversion for Sustainable Development, vol. 1, AkiNik Publications, 2024, pp. 31–58. [Online]. Available: https://doi.org/10.22271/ed.book.2882
S. Portanguen, P. Tournayre, J. Sicard, T. Astruc, and P.-S. Mirade, “Toward the design of functional foods and biobased products by 3D printing: A review,” Trends Food Sci. Technol., vol. 86, pp. 188–198, Apr. 2019, doi: 10.1016/j.tifs.2019.02.023.
F. Versino, F. Ortega, Y. Monroy, S. Rivero, O. V. López, and M. A. García, “Sustainable and Bio- Based Food Packaging: A Review on Past and Current Design Innovations,” Foods, vol. 12, no. 5, p. 1057, Mar. 2023, doi: 10.3390/foods12051057.
A. Papadochristopoulos, J. P. Kerry, N. Fegan, C. M. Burgess, and G. Duffy, “Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat,” Foods, vol. 10, no. 7, p. 1598, Jul. 2021, doi: 10.3390/foods10071598.
A. Ben-Ner and E. Siemsen, “Decentralization and Localization of Production: The Organizational and Economic Consequences of Additive Manufacturing (3D Printing),” Calif. Manage. Rev., vol. 59, no. 2, pp. 5–23, Feb. 2017, doi: 10.1177/0008125617695284.
S. K. Lodhi, A. Y. Gill, and I. Hussain, “3D Printing Techniques: Transforming Manufacturing with Precision and Sustainability,” Int. J. Multidiscip. Sci. Arts, vol. 3, no. 3, pp. 129–138, Aug. 2024, doi: 10.47709/ijmdsa.v3i3.4568.
G. A. Keoleian and D. Menerey, “Sustainable Development by Design: Review of Life Cycle Design and Related Approaches,” Air Waste, vol. 44, no. 5, pp. 645–668, May 1994, doi: 10.1080/1073161X.1994.10467269.
A. Nikolopoulou and M. G. Ierapetritou, “Optimal design of sustainable chemical processes and supply chains: A review,” Comput. Chem. Eng., vol. 44, pp. 94–103, Sep. 2012, doi: 10.1016/j.compchemeng.2012.05.006.
A. Srivastava and H. Sharma, “AI-Driven Environmental Monitoring Using Google Earth Engine,” in IoT Sensors, ML, AI and XAI: Empowering A Smarter World, vol. 50, B. Pradhan and S. Mukhopadhyay, Eds., in Smart Sensors, Measurement and Instrumentation, vol. 50. , Cham: Springer Nature Switzerland, 2024, pp. 375–385. doi: 10.1007/978-3-031-68602-3_19.
S. Alim Khan, A. Al Rashid, J. Muhammad, F. Ali, and M. Koc, “3D Printing Technology for Rapid Response to Climate Change: Challenges and Emergency Needs,” Intell. Sustain. Manuf., vol. 1, no. 1, pp. 10004–10004, 2024, doi: 10.35534/ism.2024.10004.
M. A. Ülkü, J. H. Bookbinder, and N. Y. Yun, “Leveraging Industry 4.0 Technologies for Sustainable Humanitarian Supply Chains: Evidence from the Extant Literature,” Sustainability, vol. 16, no. 3, p. 1321, Feb. 2024, doi: 10.3390/su16031321.
A. Kantaros, F. I. T. Petrescu, K. Brachos, T. Ganetsos, and N. Petrescu, “Leveraging 3D Printing for Resilient Disaster Management in Smart Cities,” Smart Cities, vol. 7, no. 6, pp. 3705–3726, Dec. 2024, doi: 10.3390/smartcities7060143.
M. Maiti and P. Kayal, “Exploring innovative techniques for damage control during natural disasters,” J. Saf. Sci. Resil., vol. 5, no. 2, pp. 147–155, Jun. 2024, doi: 10.1016/j.jnlssr.2024.02.004.
A. Derossi, B. Bhandari, K. Van Bommel, M. Noort, and C. Severini, “Could 3D food printing help to improve the food supply chain resilience against disruptions such as caused by pandemic crises?,” Int. J. Food Sci. Technol., vol. 56, no. 9, pp. 4338–4355, Sep. 2021, doi: 10.1111/ijfs.15258.
N. J. Rowan and C. M. Galanakis, “Unlocking challenges and opportunities presented by COVID-19 pandemic for cross-cutting disruption in agri-food and green deal innovations: Quo Vadis?,” Sci. Total Environ., vol. 748, p. 141362, Dec. 2020, doi: 10.1016/j.scitotenv.2020.141362.
M. Bazli, H. Ashrafi, A. Rajabipour, and C. Kutay, “3D printing for remote housing: Benefits and challenges,” Autom. Constr., vol. 148, p. 104772, Apr. 2023, doi: 10.1016/j.autcon.2023.104772.
M. G. Dancausa Millán and M. G. Millán Vázquez De La Torre, “3D food printing: Technological advances, personalization and future challenges in the food industry,” Int. J. Gastron. Food Sci., vol. 37, p. 100963, Sep. 2024, doi: 10.1016/j.ijgfs.2024.100963.
A. Derossi, R. Caporizzi, D. Azzollini, and C. Severini, “Application of 3D printing for customized food. A case on the development of a fruit-based snack for children,” J. Food Eng., vol. 220, pp. 65–75, Mar. 2018, doi: 10.1016/j.jfoodeng.2017.05.015.
M.-L. M. Hu, H.-C. K. Lin, Y.-H. Lin, and Y.-H. Yuan, “The impact of culinary virtual reality curriculum on students’ learning outcomes and acceptance,” Innov. Educ. Teach. Int., pp. 1–15, Nov. 2023, doi: 10.1080/14703297.2023.2287583.
S. Charlebois and M. Juhasz, “Food Futures and 3D Printing: Strategic Market Foresight and the Case of Structur3D,” Int. J. Food Syst. Dyn., vol. Vol 9, pp. 138-148 Pages, Mar. 2018, doi: 10.18461/IJFSD.V9I2.923.
K. H. Lee, K. H. Hwang, M. Kim, and M. Cho, “3D printed food attributes and their roles within the value-attitude-behavior model: Moderating effects of food neophobia and food technology neophobia,” J. Hosp. Tour. Manag., vol. 48, pp. 46–54, Sep. 2021, doi: 10.1016/j.jhtm.2021.05.013.
H. Chun, “A Study on the Impact of 3D Printing and Artificial Intelligence on Education and Learning Process,” Sci. Program., vol. 2021, pp. 1–5, Nov. 2021, doi: 10.1155/2021/2247346.
R. Leung and P. T. Loo, “Co-creating interactive dining experiences via interconnected and interoperable smart technology,” Asian J. Technol. Innov., vol. 30, no. 1, pp. 45–67, Jan. 2022, doi: 10.1080/19761597.2020.1822748.
M. G. Dancausa Millán and M. G. Millán Vázquez De La Torre, “3D food printing: Technological advances, personalization and future challenges in the food industry,” Int. J. Gastron. Food Sci., vol. 37, p. 100963, Sep. 2024, doi: 10.1016/j.ijgfs.2024.100963.
R. Sharma, P. Chandra Nath, T. Kumar Hazarika, A. Ojha, P. Kumar Nayak, and K. Sridhar, “Recent advances in 3D printing properties of natural food gels: Application of innovative food additives,” Food Chem., vol. 432, p. 137196, Jan. 2024, doi: 10.1016/j.foodchem.2023.137196.
J. Sun, Z. Peng, W. Zhou, J. Y. H. Fuh, G. S. Hong, and A. Chiu, “A Review on 3D Printing for Customized Food Fabrication,” Procedia Manuf., vol. 1, pp. 308–319, 2015, doi: 10.1016/j.promfg.2015.09.057.
G. Prasad, M. Padhiary, A. Hoque, and K. Kumar, “AI-Driven Personalized Nutrition Apps and Platforms for Enhanced Diet and Wellness:,” in Food in the Metaverse and Web 3.0 Era, A. M. Alhussaini Hamad and R. Soni, Eds., IGI Global, 2025, pp. 125–158. doi: 10.4018/979-8-3693-9025- 2.ch006.
S. Getahun, H. Kefale, and Y. Gelaye, “Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review,” Sci. World J., vol. 2024, no. 1, p. 2126734, Jan. 2024, doi: 10.1155/2024/2126734.
E. Said Mohamed, Aa. Belal, S. Kotb Abd-Elmabod, M. A. El-Shirbeny, A. Gad, and M. B. Zahran, “Smart farming for improving agricultural management,” Egypt. J. Remote Sens. Space Sci., vol. 24, no. 3, pp. 971–981, Dec. 2021, doi: 10.1016/j.ejrs.2021.08.007.
N. N. Thilakarathne, M. S. A. Bakar, P. E. Abas, and H. Yassin, “A Cloud Enabled Crop Recommendation Platform for Machine Learning-Driven Precision Farming,” Sensors, vol. 22, no. 16, p. 6299, Aug. 2022, doi: 10.3390/s22166299.
K. Demestichas and E. Daskalakis, “Data Lifecycle Management in Precision Agriculture Supported by Information and Communication Technology,” Agronomy, vol. 10, no. 11, p. 1648, Oct. 2020, doi: 10.3390/agronomy10111648.
V. G. Dhanya et al., “Deep learning based computer vision approaches for smart agricultural applications,” Artif. Intell. Agric., vol. 6, pp. 211–229, 2022, doi: 10.1016/j.aiia.2022.09.007.
V. Martos, A. Ahmad, P. Cartujo, and J. Ordoñez, “Ensuring Agricultural Sustainability through Remote Sensing in the Era of Agriculture 5.0,” Appl. Sci., vol. 11, no. 13, p. 5911, Jun. 2021, doi: 10.3390/app11135911.
M. Padhiary, K. Kumar, N. Hussain, D. Roy, J. A. Barbhuiya, and P. Roy, “Artificial Intelligence in Farm Management: Integrating Smart Systems for Optimal Agricultural Practices,” Int. J. Smart Agric., vol. 3, no. 1, pp. 1–11, Feb. 2025, doi: 10.54536/ijsa.v3i1.3674.
M. Padhiary, A. K. Kyndiah, R. Kumar, and D. Saha, “Exploration of electrode materials for in- situ soil fertilizer concentration measurement by electrochemical method,” Int. J. Adv. Biochem. Res., vol. 8, no. 4, pp. 539–544, Jan. 2024, doi: 10.33545/26174693.2024.v8.i4g.1011.
A. Monteiro, S. Santos, and P. Gonçalves, “Precision Agriculture for Crop and Livestock Farming—Brief Review,” Animals, vol. 11, no. 8, p. 2345, Aug. 2021, doi: 10.3390/ani11082345.
A. Yadav, K. Yadav, R. Ahmad, and K. Abd-Elsalam, “Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects,” Agrochemicals, vol. 2, no. 2, pp. 220– 256, May 2023, doi: 10.3390/agrochemicals2020016.
M. Padhiary, D. Roy, and P. Dey, “Mapping the Landscape of Biogenic Nanoparticles in Bioinformatics and Nanobiotechnology: AI-Driven Insights,” in Synthesizing and Characterizing Plant- Mediated Biocompatible Metal Nanoparticles, S. Das, S. M. Khade, D. B. Roy, and K. Trivedi, Eds., IGI Global, 2024, pp. 337–376. doi: 10.4018/979-8-3693-6240-2.ch014.
A. Bharti and P. Nautiyal, “Mechanization in horticulture for higher productivity of fruit crops,” Progress. Hortic., vol. 53, no. 2, pp. 212–216, 2021, doi: 10.5958/2249-5258.2021.00035.X.
J. Jobbágy, O. Bartík, K. Krištof, V. Bárek, R. Virágh, and V. Slaný, “Design of Hardware and Software Equipment for Monitoring Selected Operating Parameters of the Irrigator,” Sensors, vol. 22, no. 9, p. 3549, May 2022, doi: 10.3390/s22093549.
A. Tsouknidas, M. Pantazopoulos, I. Katsoulis, D. Fasnakis, S. Maropoulos, and N. Michailidis, “Impact absorption capacity of 3D-printed components fabricated by fused deposition modelling,” Mater. Des., vol. 102, pp. 41–44, Jul. 2016, doi: 10.1016/j.matdes.2016.03.154.
J. Molka-Danielsen, P. Engelseth, and H. Wang, “Large scale integration of wireless sensor network technologies for air quality monitoring at a logistics shipping base,” J. Ind. Inf. Integr., vol. 10, pp. 20–28, Jun. 2018, doi: 10.1016/j.jii.2018.02.001.
M. Padhiary, “Bridging the gap: Sustainable automation and energy efficiency in food processing,” Agric. Eng. Today, vol. 47, no. 3, pp. 47–50, 2023, doi: https://doi.org/10.52151/aet2023473.1678.
M. C. Capurro, J. M. Ham, G. J. Kluitenberg, L. Comas, and A. A. Andales, “A novel sap flow system to measure maize transpiration using a heat pulse method,” Agric. Water Manag., vol. 301, p. 108963, Aug. 2024, doi: 10.1016/j.agwat.2024.108963.
D. D. S., T. Venkatamuni, A. Bhagyalakshmi, T. N. Malleswari, and S. Ushasukhanya, “AI- Controlled Robotics in Smart Agricultural Systems: Enhancing Precision, Sustainability, and Productivity,” in Advances in Computer and Electrical Engineering, S. Mehta and F. Al-Turjman, Eds., IGI Global, 2024, pp. 351–382. doi: 10.4018/979-8-3693-5573-2.ch015.
D. Mhlanga, “Artificial Intelligence in the Industry 4.0, and Its Impact on Poverty, Innovation, Infrastructure Development, and the Sustainable Development Goals: Lessons from Emerging Economies?,” Sustainability, vol. 13, no. 11, p. 5788, May 2021, doi: 10.3390/su13115788.
M. Padhiary, “Status of Farm Automation, Advances, Trends, and Scope in India,” Int. J. Sci. Res. IJSR, vol. 13, no. 7, pp. 737–745, Jul. 2024, doi: 10.21275/SR24713184513.
M. Zeller, A. Diagne, and C. Mataya, “Market access by smallholder farmers in Malawi: implications for technology adoption, agricultural productivity and crop income,” Agric. Econ., vol. 19, no. 1–2, pp. 219–229, Sep. 1998, doi: 10.1111/j.1574-0862.1998.tb00528.x.
W. Muzari, W. Gatsi, and S. Muvhunzi, “The Impacts of Technology Adoption on Smallholder Agricultural Productivity in Sub-Saharan Africa: A Review,” J. Sustain. Dev., vol. 5, no. 8, p. p69, Jul. 2012, doi: 10.5539/jsd.v5n8p69.
H. Bhardwaj, P. Tomar, A. Sakalle, and U. Sharma, “Artificial Intelligence and Its Applications in Agriculture With the Future of Smart Agriculture Techniques:,” in Advances in Environmental Engineering and Green Technologies, P. Tomar and G. Kaur, Eds., IGI Global, 2021, pp. 25–39. doi: 10.4018/978-1-7998-1722-2.ch002.
S. Besklubova, M. J. Skibniewski, and X. Zhang, “Factors Affecting 3D Printing Technology Adaptation in Construction,” J. Constr. Eng. Manag., vol. 147, no. 5, p. 04021026, May 2021, doi: 10.1061/(ASCE)CO.1943-7862.0002034.
M. Fey, 3D printing and international security: risks and challenges of an emerging technology. in PRIF reports, no. No. 144. Frankfurt am Main: Peace Research Institute Frankfurt (PRIF), 2017.
P. Glewwe and K. Muralidharan, “Improving Education Outcomes in Developing Countries,” in Handbook of the Economics of Education, vol. 5, Elsevier, 2016, pp. 653–743. doi: 10.1016/B978-0- 444-63459-7.00010-5.
A. Chaurey, M. Ranganathan, and P. Mohanty, “Electricity access for geographically disadvantaged rural communities—technology and policy insights,” Energy Policy, vol. 32, no. 15, pp. 1693–1705, Oct. 2004, doi: 10.1016/S0301-4215(03)00160-5.
M. Warschauer and T. Matuchniak, “New Technology and Digital Worlds: Analyzing Evidence of Equity in Access, Use, and Outcomes,” Rev. Res. Educ., vol. 34, no. 1, pp. 179–225, Mar. 2010, doi: 10.3102/0091732X09349791.
R. L. McCown, “Changing systems for supporting farmers’ decisions: problems, paradigms, and prospects,” Agric. Syst., vol. 74, no. 1, pp. 179–220, Oct. 2002, doi: 10.1016/S0308-521X(02)00026-4.
K. Jansen and S. Vellema, Eds., Agribusiness and society: corporate responses to environmentalism, market opportunities and public regulation. London ; New York: Zed Books, 2004.
M. Padhiary, R. Kumar, and L. N. Sethi, “Navigating the Future of Agriculture: A Comprehensive Review of Automatic All-Terrain Vehicles in Precision Farming,” J. Inst. Eng. India Ser. A, vol. 105, pp. 767–782, Jun. 2024, doi: 10.1007/s40030-024-00816-2.
L. Hansson, “Regulatory governance in emerging technologies: The case of autonomous vehicles in Sweden and Norway,” Res. Transp. Econ., vol. 83, p. 100967, Nov. 2020, doi: 10.1016/j.retrec.2020.100967.
A. Faulkner, “Regulatory policy as innovation: Constructing rules of engagement for a technological zone of tissue engineering in the European Union,” Res. Policy, vol. 38, no. 4, pp. 637– 646, May 2009, doi: 10.1016/j.respol.2009.01.017.
A. M. Soltani and H. Pouypouy, “Standardization and Regulations of Nanotechnology and Recent Government Policies Across the World on Nanomaterials,” in Advances in Phytonanotechnology, Elsevier, 2019, pp. 419–446. doi: 10.1016/B978-0-12-815322-2.00020-1.
M. Padhiary, L. N. Sethi, and A. Kumar, “Enhancing Hill Farming Efficiency Using Unmanned Agricultural Vehicles: A Comprehensive Review,” Trans. Indian Natl. Acad. Eng., vol. 9, no. 2, pp. 253– 268, Feb. 2024, doi: 10.1007/s41403-024-00458-7.
M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “Enhancing smart farming through the applications of Agriculture 4.0 technologies,” Int. J. Intell. Netw., vol. 3, pp. 150–164, 2022, doi: 10.1016/j.ijin.2022.09.004.
M. Padhiary, A. Hoque, G. Prasad, K. Kumar, and B. Sahu, “Precision Agriculture and AI-Driven Resource Optimization for Sustainable Land and Resource Management:,” in Smart Water Technology for Sustainable Management in Modern Cities, J. A. Ruiz-Vanoye and O. Díaz-Parra, Eds., IGI Global, 2025, pp. 197–232. doi: 10.4018/979-8-3693-8074-1.ch009.
F. Cerdas, M. Juraschek, S. Thiede, and C. Herrmann, “Life Cycle Assessment of 3D Printed Products in a Distributed Manufacturing System,” J. Ind. Ecol., vol. 21, no. S1, Nov. 2017, doi:10.1111/jiec.12618.
E. J. Malecki, “Digital development in rural areas: potentials and pitfalls,” J. Rural Stud., vol. 19, no. 2, pp. 201–214, Apr. 2003, doi: 10.1016/S0743-0167(02)00068-2.
E. M. B. M. Karunathilake, A. T. Le, S. Heo, Y. S. Chung, and S. Mansoor, “The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture,” Agriculture, vol. 13, no. 8, p. 1593, Aug. 2023, doi: 10.3390/agriculture13081593.
M. Michel, A. L. Eldridge, C. Hartmann, P. Klassen, J. Ingram, and G. W. Meijer, “Benefits and challenges of food processing in the context of food systems, value chains and sustainable development goals,” Trends Food Sci. Technol., vol. 153, p. 104703, Nov. 2024, doi:10.1016/j.tifs.2024.104703.
G. Thiele et al., “Multi-stakeholder platforms for linking small farmers to value chains: evidence from the Andes,” Int. J. Agric. Sustain., vol. 9, no. 3, pp. 423–433, Aug. 2011, doi: 10.1080/14735903.2011.589206.
L. Klerkx, E. Jakku, and P. Labarthe, “A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda,” NJAS Wagening. J. Life Sci., vol. 90–91, no. 1, pp. 1–16, Dec. 2019, doi: 10.1016/j.njas.2019.100315.
A. Tong et al., “Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends,” SLAS Technol., vol. 26, no. 4, pp. 333–366, Aug. 2021, doi: 10.1177/24726303211020297.
M. E. Mondejar et al., “Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet,” Sci. Total Environ., vol. 794, p. 148539, Nov. 2021, doi: 10.1016/j.scitotenv.2021.148539.
J. C. L. Schuh and K. A. Funk, “Compilation of International Standards and Regulatory Guidance Documents for Evaluation of Biomaterials, Medical Devices, and 3-D Printed and Regenerative Medicine Products,” Toxicol. Pathol., vol. 47, no. 3, pp. 344–357, Apr. 2019, doi: 10.1177/0192623318804121.
A. P. Antony, K. Leith, C. Jolley, J. Lu, and D. J. Sweeney, “A Review of Practice and Implementation of the Internet of Things (IoT) for Smallholder Agriculture,” Sustainability, vol. 12, no. 9, p. 3750, May 2020, doi: 10.3390/su12093750.
A. Bauer et al., “Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production,” Hortic. Res., vol. 6, no. 1, p. 70, Dec. 2019, doi: 10.1038/s41438-019-0151-5.
A. Dsouza, L. Newman, T. Graham, and E. D. G. Fraser, “Exploring the landscape of controlled environment agriculture research: A systematic scoping review of trends and topics,” Agric. Syst., vol. 209, p. 103673, Jun. 2023, doi: 10.1016/j.agsy.2023.103673.
S. K. Sood, Y. S. Lamba, and A. K. Singh, “Progress and Prospects of 3-D and 4-D Printing in Sustainable Development: A Scientometric Review,” IEEE Trans. Eng. Manag., vol. 71, pp. 14415– 14425, 2024, doi: 10.1109/TEM.2024.3452952.
S. Gulati, “Technology-Enhanced Learning in Developing Nations: A review,” Int. Rev. Res. Open Distrib. Learn., vol. 9, no. 1, Feb. 2008, doi: 10.19173/irrodl.v9i1.477.
H. M. Snoek et al., “Advancing food, nutrition, and health research in Europe by connecting and building research infrastructures in a DISH-RI: Results of the EuroDISH project,” Trends Food Sci. Technol., vol. 73, pp. 58–66, Mar. 2018, doi: 10.1016/j.tifs.2017.12.015.
D. Saha, M. Padhiary, J. A. Barbhuiya, T. Chakrabarty, and L. N. Sethi, “Development of an IOT based Solenoid Controlled Pressure Regulation System for Precision Sprayer,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 11, no. 7, pp. 2210–2216, 2023, doi: 10.22214/ijraset.2023.55103.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.