Development of a Predictive Maintenance Framework for Combined-Cycle Turbines Using Real-Time Sensor Data and Machine Learning
DOI:
https://doi.org/10.32628/IJSRSET25122185Keywords:
Predictive Maintenance, Combined-Cycle Turbines, Real-Time Sensor Data, Machine Learning, Failure PredictionAbstract
The reliability and efficiency of combined-cycle turbines are critical to ensuring optimal energy production and reducing operational costs. Unscheduled failures and maintenance activities can lead to significant financial losses and reduced system performance. This study presents a predictive maintenance framework that leverages real-time sensor data and machine learning to enhance the operational efficiency of combined-cycle turbines. By continuously monitoring key turbine parameters, the proposed framework enables early fault detection and failure prediction, minimizing downtime and maintenance costs. The integration of machine learning techniques allows for data-driven decision-making, improving the accuracy of failure forecasts and optimizing maintenance schedules. Unlike traditional reactive and preventive maintenance strategies, predictive maintenance enhances asset longevity and operational stability by addressing potential issues before they escalate into major failures. This framework contributes to the advancement of intelligent maintenance solutions in the energy sector, promoting sustainable and cost-effective turbine operations. The findings highlight the potential of predictive analytics in transforming turbine maintenance strategies, ensuring higher efficiency, reliability, and economic viability in power generation systems.
Downloads
References
Afridi, Y. S., Ahmad, K., & Hassan, L. (2021). Artificial intelligence-based prognostic maintenance of renewable energy systems: A review of techniques, challenges, and future research directions. arXiv preprint arXiv:2104.12561.
Bousdekis, A., Lepenioti, K., Apostolou, D., & Mentzas, G. (2021). On sustainable predictive maintenance: Exploration of key barriers and incentives of small and medium-sized enterprises. Sustainable Futures, 3, 100047. https://doi.org/10.1016/j.sftr.2021.100047
Boyce, M. P., Gabriles, G., & Meher-Homji, C. B. (1994). Enhancing system availability and performance in combined cycle power plants by the use of condition monitoring. SAE Technical Paper 941175. https://doi.org/10.4271/941175
Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. P., Basto, J. P., & Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024. https://doi.org/10.1016/j.cie.2019.106024
Chen, Z., Li, X., & He, H. (2021). A comprehensive review of machine learning-based fault diagnosis for power systems. IEEE Transactions on Smart Grid, 12(1), 440-460. https://doi.org/10.1109/TSG.2020.3015950
Enyejo, J. O., Adeyemi, A. F., Olola, T. M., Igba, E & Obani, O. Q. (2024). Resilience in supply chains: How technology is helping USA companies navigate disruptions. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 261–277. https://doi.org/10.30574/msarr.2024.11.2.0129
Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika, C. J., Awotiwon, B. O., & Olola, T. M. (2024). Digital Twin Technology, Predictive Analytics, and Sustainable Project Management in Global Supply Chains for Risk Mitigation, Optimization, and Carbon Footprint Reduction through Green Initiatives. International Journal of Innovative Science and Research Technology, Volume 9, Issue 11, November– 2024. ISSN No:-2456-2165. https://doi.org/10.38124/ijisrt/IJISRT24NOV1344
Enyejo, J. O., Obani, O. Q, Afolabi, O. Igba, E. & Ibokette, A. I., (2024). Effect of Augmented Reality (AR) and Virtual Reality (VR) experiences on customer engagement and purchase behavior in retail stores. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 132–150. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0116.pdf
Fassett, J. (2011). Options for optimizing combined cycle plants. POWER Magazine. https://www.powermag.com/options-optimizing-combined-cycle-plants/
García, J., Llopis-Albert, C., & Alemany, S. (2020). Big data integration challenges in industrial predictive maintenance: Solutions and future directions. Journal of Manufacturing Systems, 56, 567-580. https://doi.org/10.1016/j.jmsy.2020.07.010
Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In F.-J. Kahlen, S. Flumerfelt, & A. Alves (Eds.), Transdisciplinary perspectives on complex systems: New findings and approaches (pp. 85–113). Springer.
Hoffmann, M. A., & Lasch, R. (2025). Unlocking the potential of predictive maintenance for intelligent manufacturing: A case study on potentials, barriers, and critical success factors. Schmalenbach Journal of Business Research, 77, 27–55. https://doi.org/10.1007/s41471-024-00204-3
Igba, E., Olarinoye, H. S., Nwakaego, V. E., Sehemba, D. B., Oluhaiyero. Y. S. & Okika, N. (2025). Synthetic Data Generation Using Generative AI to Combat Identity Fraud and Enhance Global Financial Cybersecurity Frameworks. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 4, Issue 2, 2025. DOI: https://doi.org/10.5281/zenodo.14928919
Ijiga, A. C., Aboi, E. J., Idoko, P. I., Enyejo, L. A., & Odeyemi, M. O. (2024). Collaborative innovations in Artificial Intelligence (AI): Partnering with leading U.S. tech firms to combat human trafficking. Global Journal of Engineering and Technology Advances, 2024,18(03), 106-123. https://gjeta.com/sites/default/files/GJETA-2024-0046.pdf
Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I., Olajide, F. I. & Enyejo, L. A. (2024). Precision healthcare analytics: Integrating ML for automated image interpretation, disease detection, and prognosis prediction. World Journal of Biology Pharmacy and Health Sciences, 2024, 18(01), 336–354. https://wjbphs.com/sites/default/files/WJBPHS-2024-0214.pdf
Javadi, M. A., Hoseinzadeh, S., Khalaji, M., & Ghasemiasl, R. (2019). Optimization and analysis of exergy, economic, and environmental of a combined cycle power plant. Sādhanā, 44, 121. https://doi.org/10.1007/s12046-019-1102-4
Khan, M. A., Hussain, M., & Rehman, S. U. (2022). Performance evaluation of deep learning models for industrial predictive maintenance. Expert Systems with Applications, 198, 116902. https://doi.org/10.1016/j.eswa.2022.116902
Kobayashi, K., & Alam, S. B. (2023). Explainable, interpretable & trustworthy AI for intelligent digital twin: Case study on remaining useful life. arXiv preprint arXiv:2301.06676.
Kumar, R., Singh, R., & Kumar, P. (2020). Decision making in predictive maintenance: Literature review and research agenda. Materials Today: Proceedings, 28, 1816–1824. https://doi.org/10.1016/j.matpr.2020.04.706
Latrach, A. (2023). Application of deep learning for predictive maintenance of oilfield equipment. arXiv preprint arXiv:2306.11040. https://arxiv.org/abs/2306.11040
Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23. https://doi.org/10.1016/j.mfglet.2014.12.001
Lee, J., Jin, C., & Bagheri, B. (2020). Cyber-physical systems for predictive maintenance: State of the art, challenges, and opportunities. Manufacturing Letters, 25, 20-25. https://doi.org/10.1016/j.mfglet.2020.10.003
Liu, Y., Yang, B., & Wang, Q. (2021). Deep learning for anomaly detection in industrial applications: Challenges and opportunities. IEEE Transactions on Industrial Informatics, 17(6), 4056-4066. https://doi.org/10.1109/TII.2021.3063542
Lourenço, A. B. (2020). Bi-objective optimization of a combined cycle power plant with economic and life cycle assessment considerations. Process Integration and Optimization for Sustainability, 4, 67–79. https://doi.org/10.1007/s41660-019-00100-y
Mourtzis, D., Doukas, M., & Bernidaki, D. (2014). Maintenance 4.0: Exploring the Fourth Industrial Revolution. Procedia CIRP, 17, 1-6. https://doi.org/10.1016/j.procir.2014.01.003
Okika, N., Okoh, O. F., & Etuk, E. E. (2025). Mitigating insider threats and social engineering tactics in advanced persistent threat operations through behavioral analytics and cybersecurity training. International Journal of Advance Research Publication and Reviews, 2(3), 11–27. https://www.ijarpr.com
Okoh, O. F., Ukpoju, E. A., Otakwu, A., Ayoola, V. B., & Ijiga, A. C. (2024). Evaluating the Influence of Human Capital Development on Economic Growth: A Global Analysis of the Potential Impact of Artificial Intelligence Technologies. Corporate Sustainable Management Journal (CSMJ) 2(1) (2024) 49-59, http://doi.org/10.26480/csmj.01.2024.49.59
Okoh, O. F., Batur, D. S., Ogwuche, A. O., Fadeke, A. A. & Adeyeye, Y. (2025). The Role of Comprehensive Sexual and Reproductive Health Education in Reducing Dropout Rates Among Adolescents in Northern and Southern Nigeria. International Journal of Advance Research Publication and Reviews . Vol 2, Issue 1, pp 30-48, January 2025 ISSN: 3049-0103
Okoh, O. F., Batur, S. D., Ogwuche, A. O., Fadeke,A. A. & Adeyeye, Y. (2025). The Influence of Digital Health Literacy Education on Adolescent Risk Behaviors: A Cross-Cultural Study of Japan and Uruguay. International Journal of Advance Research Publication and Reviews Vol 2, Issue 1, pp 49-66, January 2025. ISSN: 3049-0103
Okoh, O. F., Fadeke, A. A, Ogwuche, A.O. & Adeyeye, Y. (2024). Integrating Health Education into School Management Practices and Its Impact on Academic Performance in Rural Communities: A Comparative Study of Nigeria, Canada, and Brazil. International Journal of Advance Research Publication and Reviews, Vol 1, Issue 2, October 2024, E-ISSN 3049-0103
Okoh, O. F., Fadeke, A. A, Ogwuche, A.O. & Adeyeye, Y. (2024). The Role of Educational Leadership in Enhancing Health Literacy and Implementing School-Based Mental Health Programs: Challenges and Opportunities in Developing Nations. International Journal of Advance Research Publication and Reviews, Vol 1, Issue 2, October 2024, E-ISSN 3049-0103.
Okoh, O. F., Ukpoju, E. A., Otakwu. A., Ayoolad, V. B. & Enyejo, L. A. (2024). CONSTRUCTION MANAGEMENT: SOME ISSUES IN THE CONSTRUCTION PROJECT. Engineering Heritage Journal (GWK). ISSN: 2521-0440 (Online). DOI: http://doi.org/10.26480/gwk.01.2024.42.50
Omachi, A., Batur, D. S., Ogwuche, A. O., Fadeke, A.A. & Adeyeye, Y. (2025). The Impact of School-Based Mental Health Interventions on Academic Resilience through a Comparative Study of Secondary Schools in Indonesia and Argentina. International Journal of Advance Research Publication and Reviews Vol 2, Issue 1, pp 15-29, ISSN: 3049-0103
Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360-degree comparison. IEEE Access, 6, 3585–3593. https://doi.org/10.1109/ACCESS.2018.2793265
Sun, J., Zhang, H., & Li, W. (2020). Machine learning-based failure prediction in power systems: A review of recent advances. Renewable and Sustainable Energy Reviews, 127, 109841. https://doi.org/10.1016/j.rser.2020.109841
Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Machine learning for predictive maintenance: A multiple classifier approach. IEEE Transactions on Industrial Informatics, 11(3), 812-820. https://doi.org/10.1109/TII.2014.2349359
Tahan, M., Tsoutsanis, E., Muhammad, M., & Abdul Karim, Z. A. (2017). Performance-based health monitoring, diagnostics, and prognostics for condition-based maintenance of gas turbines: A review. Applied Energy, 198, 122-144. https://doi.org/10.1016/j.apenergy.2017.03.085
Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., & Elger, G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability Engineering & System Safety, 107864. https://doi.org/10.1016/j.ress.2021.107864
Venkatachalam, D., Paul, D., & Selvaraj, A. (2022). AI/ML powered predictive analytics in cloud-based enterprise systems: A framework for scalable data-driven decision making. Journal of Artificial Intelligence Research, 2(2), 142–182. https://tsbpublisher.org/jair/article/view/25
Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: Advantages, challenges, and applications. Production & Manufacturing Research, 4(1), 23-45. https://doi.org/10.1080/21693277.2016.1192517
Yu, Q., Patriksson, M., & Sagitov, S. (2020). Optimal scheduling of the next preventive maintenance activity for a wind farm. arXiv preprint arXiv:2001.03889. https://arxiv.org/abs/2001.03889
Zhang, W., Yang, D., & Wang, H. (2019). Data-driven methods for predictive maintenance of industrial equipment: A survey. IEEE Systems Journal, 13(3), 2213-2227. https://doi.org/10.1109/JSYST.2019.2905565
Zheng, H., Xu, K., Zhang, M., Tan, H., & Li, H. (2024). Efficient resource allocation in cloud computing environments using AI-driven predictive analytics. Applied and Computational Engineering, 82. https://www.ewadirect.com/proceedings/ace/article/view/15529
Zhou, Z., Li, X., & Wang, Y. (2021). Challenges in industrial sensor data fusion: A review on integration techniques and reliability concerns. IEEE Transactions on Industrial Informatics, 17(4), 2564-2578. https://doi.org/10.1109/TII.2021.3058967
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.