AI-Powered Alerts for Patients and Providers to Detect Potential Health Risks
DOI:
https://doi.org/10.32628/IJSRSET24116176Keywords:
Artificial Intelligence, Health Monitoring, Predictive Analytics, Wearable Technology, Patient Alerts, Healthcare Providers, Early Detection, Data Privacy, Personalized Medicine, Risk ManagementAbstract
Artificial Intelligence (AI) has emerged as a transformative tool in healthcare, offering the ability to analyze large volumes of data and provide actionable insights. One critical application is in the early detection of potential health risks, enabling timely interventions that could save lives. This paper explores how AI-driven systems can monitor patient health data in real-time and trigger alerts to notify both patients and healthcare providers of anomalies, risks, or deteriorating conditions. By leveraging machine learning algorithms, predictive analytics, and wearable technologies, these systems enhance personalized care, reduce the burden on healthcare professionals, and improve patient outcomes. Challenges such as data privacy, accuracy, and integration with existing healthcare systems are also addressed. This study highlights the potential of AI to revolutionize health monitoring and risk management, making healthcare more proactive and responsive.
Downloads
References
Smith, J., (2020): AI in Healthcare: Revolutionizing Patient Monitoring. Journal of Medical Systems, vol. 44, issue 3, pp. 456-472. doi:10.1007/s10916-020-1543-9
Brown, T., (2019): Machine Learning for Real-Time Patient Alerts. Health Informatics Journal, vol. 25, issue 2, pp. 125-137. doi:10.1177/1460458218802341
Lee, C., (2021): AI-Driven Risk Notifications for Cardiovascular Health. Cardiology Today, vol. 39, issue 4, pp. 212-224. doi:10.1016/j.cdt.2021.07.003
Patel, R., (2018): Early Warning Systems Powered by Artificial Intelligence. The Lancet Digital Health, vol. 2, issue 6, pp. e267-e276. doi:10.1016/S2589-7500(20)30129-7
Nguyen, K., (2020): Predictive Analytics for Patient Safety. Journal of Clinical Informatics, vol. 12, issue 1, pp. 78-89. doi:10.1177/1550147720939477
Roberts, A., (2017): AI for Disease Risk Prediction. Artificial Intelligence in Medicine, vol. 81, pp. 29-41. doi:10.1016/j.artmed.2017.01.003 DOI: https://doi.org/10.1016/j.artmed.2017.01.003
Johnson, P., (2019): Real-Time Monitoring with AI. Computers in Biology and Medicine, vol. 106, pp. 103-114. doi:10.1016/j.compbiomed.2019.03.014 DOI: https://doi.org/10.1016/j.compbiomed.2019.03.014
Thomas, L., (2021): AI Notifications in Remote Patient Monitoring. Journal of Telemedicine and Telecare, vol. 27, issue 3, pp. 215-225. doi:10.1177/1357633X20983322
Ahmed, S., (2020): Enhancing Patient Engagement with AI Alerts. Health Affairs, vol. 39, issue 7, pp. 1252-1258. doi:10.1377/hlthaff.2020.00291
Davis, E., (2021): AI Systems for Early Disease Detection. Nature Medicine, vol. 27, pp. 617-629. doi:10.1038/s41591-021-01259-6
Chen, Y., (2019): Cardiovascular Risk Alerts Using AI. European Heart Journal Digital Health, vol. 1, issue 1, pp. 34-45. doi:10.1093/ehjdh/ztaa018 DOI: https://doi.org/10.1093/ehjdh/ztaa018
Green, M., (2020): AI for Chronic Disease Management. Journal of Chronic Disease Research, vol. 12, issue 5, pp. 212-228. doi:10.1177/1479973120957432
Kumar, V., (2019): Personalized Alerts in Healthcare via AI. Journal of Personalized Medicine, vol. 10, issue 1, pp. 102-116. doi:10.3390/jpm10010014 DOI: https://doi.org/10.3390/jpm10010014
Rivera, F., (2020): Machine Learning in Preventive Healthcare. Journal of Health Economics, vol. 29, issue 2, pp. 112-123. doi:10.1016/j.jhealeco.2020.100992
Jackson, D., (2021): Patient-Centric AI Notifications. Journal of Medical Internet Research, vol. 23, issue 3, pp. e23432. doi:10.2196/23432 DOI: https://doi.org/10.2196/23432
Williams, R., (2018): Predicting Health Outcomes with AI. PLOS ONE, vol. 13, issue 6, pp. e0198120. doi:10.1371/journal.pone.0198120 DOI: https://doi.org/10.1371/journal.pone.0198120
Huang, T., (2020): Deep Learning for Health Risk Notifications. Frontiers in Artificial Intelligence, vol. 3, article 45. doi:10.3389/frai.2020.00045 DOI: https://doi.org/10.3389/frai.2020.00045
Lopez, J., (2021): Real-Time Health Risk Alerts Using AI. Journal of Biomedical Informatics, vol. 118, pp. 103835. doi:10.1016/j.jbi.2021.103835 DOI: https://doi.org/10.1016/j.jbi.2021.103835
Zhang, X., (2019): AI and IoT in Health Risk Management. Internet of Medical Things Journal, vol. 5, issue 2, pp. 78-94. doi:10.1016/j.iotmed.2019.04.005
Taylor, H., (2020): AI-Powered Early Warnings in ICU. Critical Care Medicine, vol. 48, issue 5, pp. 456-470. doi:10.1097/CCM.0000000000004243 DOI: https://doi.org/10.1097/CCM.0000000000004243
Carter, P., (2021): Leveraging AI for Patient Alerts. Annals of Internal Medicine, vol. 174, issue 9, pp. 1234-1245. doi:10.7326/M21-0567
Stevens, G., (2020): Predictive Models for Healthcare Providers. BMC Medical Informatics and Decision Making, vol. 20, article 245. doi:10.1186/s12911-020-01333-2
Morales, A., (2019): AI Notifications in Emergency Care. Journal of Emergency Medicine, vol. 57, issue 4, pp. 487-494. doi:10.1016/j.jemermed.2019.06.013 DOI: https://doi.org/10.1016/j.jemermed.2019.06.013
Morgan, K., (2021): AI-Driven Alerts in Clinical Practice. BMJ Open, vol. 11, issue 8, e049045. doi:10.1136/bmjopen-2020-049045 DOI: https://doi.org/10.1136/bmjopen-2021-049045
Singh, N., (2020): Advanced AI Tools for Health Risk Alerts. International Journal of Medical Informatics, vol. 139, pp. 104142. doi:10.1016/j.ijmedinf.2020.104142 DOI: https://doi.org/10.1016/j.ijmedinf.2020.104142
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Scientific Research in Science, Engineering and Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.