Influence of Chromium Doping on the Structural and Optical Properties of Zinc Sulfide Thin Films Prepared via Spray Pyrolysis
DOI:
https://doi.org/10.32628/IJSRSET2512119Keywords:
ZnS thin film, Cr, structural, topography, Optical Properties, bandgapAbstract
In this study, doping impact of Chromium (Cr) on the actual properties of Zinc Sulphide (ZnS) at different content of (0, 2, and 4 wt % Cr) was discussed. The considered examples were readied utilizing Spraying Technique. Other published papers matched structural, topographical, and optical characterization in similar writings. X-ray diffraction reveals the high peak matched (008) plane; grain size is set to increase from 12.23 to 13.44 nm with Chromium doping. In contrast, the dislocation density decreases from 66.85 to 55.36, while strain decreases from 28.33 to 25.79. AFM images indicate that average particle size was 63.3 nm to 31.89 nm with Undoped ZnS and ZnS: Cr with 0% and 4% concentrations, respectively. Transmittance offers good transparency, in the visible area between 68 and 63, for undoped ZnS and 4% Cr content. The absorption coefficient indices increased via increasing Chromium doping. The optical bandgap of undoped ZnS and ZnS:Cr films decreases from 3.47 eV to 3.37 eV as the chromium concentration increases from 0% to 4%. The extinction coefficient and refractive index decrease via increasing Chromium doping.
Downloads
References
Contreras M. A., Nakada T., Hongo M., Pudov A. O. and Sites J. R., (2003). Proceedings 3rd World Conference of Photovoltaic Energy Conversion, Osaka, Japan, p. 570.
Kurbatov D., Оpanasyuk A., Kshnyakina S., Мelnik V. and Nesprava V., (2010). Rom. Jur. Phys., Vol. 55, p. 213–219.
Kavanagh Y., Alam M. J.and Cameron D.C., (2004). thin solid films, Vol.85, p.447–448.
Ben Nasr T., Kamoun N., Kanzari M.and Bennaceur R, (2006). thin solid films, Vol.500, p.4– 8.
Kobayashi R., Sato N., Ichimura M. and Arai E, (2003). J. opt. and adv. mater., Vol. 5, p. 893 – 898. [3] Yamamoto T., Kishimoto S. and Iida S., (2001). J. Phys., pp. 308–310.
Bredol M. and Merikhi J., (1998). Mater. Sci.,Vol.33, p.471.
Jie Cheng, DongBo Fan, Hao Wang, BingWei Liu, YongCai Zhang and Hui, Chemical bath deposition of crystalline ZnS thin films, Semicond. Sci. Technol., 2003, 18, 676-679.
Seyyed Zabihollah Rahchamani, Hamid Rezagholipour Dizaji, Mohammad Hossein Ehsani, Study of structural and optical properties of ZnS zigzag nanostructured thin films, Applied Surface Science, 2015, 356, 1096-1104.
Inamdar AI, Sangeun Cho, Yongcheol Jo, Jongmin Kim, Jaeseok Han, Pawar SM, Hyeonseok Woo, Kalubarme RS, ChanJin Park, Hyungsang Kim, Hyunsik Im, Optical properties in Mn-doped ZnS thin films: Photoluminescence quenching, Materials Letters, 2016, 163, 126-129.
Reza Sahraei, Soraya Darafarin, Preparation of nanocrystalline Ni doped ZnS thin films by ammoniafree chemical bath deposition method and optical properties, Journal of Luminescence, 2014, 149, 170-175.
Jun Liu, Aixiang Wei, Yu Zhao, Effect of different complexing agents on the properties of chemicalbath-deposited ZnS thin films, Journal of Alloys and Compounds, 2014, 588, 228-234.
Reza Sahraei, , Ghaffar Motedayen Aval, Alireza Goudarzi, Compositional, structural, and optical study of nanocrystalline ZnS thin films prepared by a new chemical bath deposition route, J. Alloys Compd., 466 (2008), 488-492.
Gode F, Gumus C and Zor M, Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method, J. Cryst. Growth, 299 (2007), 136-141.
Aixiang Wei, Jun Liu, Mixue Zhuang, Yu Zhao, Preparation and characterization of ZnS thin films prepared by chemical bath deposition, Materials Science in Semiconductor Processing, 2013, 16, 1478–1484.
Daniela E. Ortíz-Ramos, Luis A. González, Rafael Ramirez-Bon, p-Type transparent Cu doped ZnS thin films by the chemical bath deposition method, Materials Letters, 2014, 124, 267-270.
Lopez MC, Espinos JP, Martin F, Leinen D and Ramos-barrado JR, Growth of ZnS thin films obtained by chemical spray pyrolysis: The influence of precursors, J. Cryst. Growth, 2005, 285, 66-75.
B. Bhattacharjee, D. Ganguli, K. Iakoubovskii, A. Stesmans, S. Chaudhuri, Bulletin of Materials Science, 25, 175, 2002.
W. Xiaochun, L. Fachun, L. Limei, Jing Lv, Binping Zhuang, Qu Yan, Zhigao Huang, Applied Surface Science, 254, 6455, 2008.
Dongjun Yoo, Moon Suk Choi, Seung Chan Heo, Chulwon Chung, Dohyung Kim, Changhwan Choi, Metals and Materials International, 19, 1309, 2013.
Huan Ke, Shuwang Duo, Tingzhi Liu, Qi Sun, Chengxiang Ruan, Xiaoyan Fei, Jilin Tan, Sheng Zhan, Materials Science in Semiconductor Processing, 18, 28, 2014.
J Fang, P H Holloway, J E Yu, K S Jones, B Pathangey, E Brettschneider T J Anderson, Applied Surface Science, 70, 701, 1993.
M. McLaughlin, H. F. Sakeek, P. Maguire, W. G. Graham, J. Molloy, T. Morrow, S. Laverty, J. Anderson, Applied Physics Letters, 63, 1865, 1993.
C. D. Lokhande, M. S. Jadhav, S. H. Pawar, Journal of Electrochemical Society, 136, 2756, 1989.
M. C. Lopez, J. P. Espinos, F. Martin, D. Leinen, J. R. Ramos-Barrado, Journal of Crystal Growth, 285, 66, 2005.
D. H. Hwang, J. H. Ahn, K. N. Hui, K. S. Hui, and Y. G. Son, “Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering,” Nanoscale Research Letters, vol. 7, article 26, pp. 1–13, 2012.
M. W. Huang, Y. W. Cheng, K. Y. Pan, C. C. Chang, F. S. Shieu, and H. C. Shih, “The preparation and cathodoluminescence of ZnS nanowires grown by chemical vapor deposition,” Applied Surface Science, vol. 261, pp. 665–670, 2012.
J. P. Bosco, S. B. Demers, G. M. Kimball, N. S. Lewis, and H. A. Atwater, “Band alignment of epitaxial ZnS/Zn3P2 heterojunctions,” Journal of Applied Physics, vol. 112, no. 9, Article ID 093703, 2012.
S. Yano, R. Schroeder, H. Sakai, and B. Ullrich, “High-electricfield photocurrent in thin-film ZnS formed by pulsed-laser deposition,” Applied Physics Letters, vol. 82, no. 13, pp. 2026–2028, 2003.
K. Nagamani, N. Revathi, P. Prathap, Y. Lingappa, and K. T. R. Reddy, “Al-doped ZnS layers synthesized by solution growth method,” Current Applied Physics, vol. 12, no. 2, pp. 380–384, 2012.
G. L. Agawane, S. W. Shin, M. S. Kim et al., “Green route fast synthesis and characterization of chemical bath deposited nanocrystalline ZnS buffer layers,” Current Applied Physics, vol. 13, no. 5, pp. 850–856, 2013.
G. Xu, S. Ji, C. Miao, G. Liu, and C. Ye, “Effect of ZnS and CdS coating on the photovoltaic properties of CuInS2-sensitized photoelectrodes,” Journal ofMaterials Chemistry, vol. 22, no. 11, pp. 4890–4896, 2012.
Haddad H, Chelouche A, Talantikite D, Merzouk H, Boudjouan F, Djouadi D, Effects of deposition time in chemically deposited ZnS films in acidic solution, Thin Solid Films, 2015, 89, 451-456.
O'Brien P, Otway DJ and Boyle DS, The importance of ternary complexes in defining basic conditions for the deposition of ZnS by aqueous chemical bath deposition, Thin Solid Films, 2000, 361-362, 17-21.
K. Ahn, J. H. Jeon, S. Y. Jeong et al., “Chemical bonding states and atomic distribution within Zn(S,O) film prepared on CIGS/Mo/glass substrates by chemical bath deposition,” Current Applied Physics, vol. 12, no. 6, pp. 1465–1469, 2012.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.